Cargando…

Local Integral Estimates for Quasilinear Equations with Measure Data

Local integral estimates as well as local nonexistence results for a class of quasilinear equations −Δ(p) u = σP(u) + ω for p > 1 and Hessian equations F (k)[−u] = σP(u) + ω were established, where σ is a nonnegative locally integrable function or, more generally, a locally finite measure, ω is a...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Qiaoyu, Zhang, Shengzhi, Xu, Yonglin, Mu, Jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886069/
https://www.ncbi.nlm.nih.gov/pubmed/27294190
http://dx.doi.org/10.1155/2016/5742063
_version_ 1782434577796562944
author Tian, Qiaoyu
Zhang, Shengzhi
Xu, Yonglin
Mu, Jia
author_facet Tian, Qiaoyu
Zhang, Shengzhi
Xu, Yonglin
Mu, Jia
author_sort Tian, Qiaoyu
collection PubMed
description Local integral estimates as well as local nonexistence results for a class of quasilinear equations −Δ(p) u = σP(u) + ω for p > 1 and Hessian equations F (k)[−u] = σP(u) + ω were established, where σ is a nonnegative locally integrable function or, more generally, a locally finite measure, ω is a positive Radon measure, and P(u) ~ exp⁡αu (β) with α > 0 and β ≥ 1 or P(u) = u (p−1).
format Online
Article
Text
id pubmed-4886069
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-48860692016-06-12 Local Integral Estimates for Quasilinear Equations with Measure Data Tian, Qiaoyu Zhang, Shengzhi Xu, Yonglin Mu, Jia ScientificWorldJournal Research Article Local integral estimates as well as local nonexistence results for a class of quasilinear equations −Δ(p) u = σP(u) + ω for p > 1 and Hessian equations F (k)[−u] = σP(u) + ω were established, where σ is a nonnegative locally integrable function or, more generally, a locally finite measure, ω is a positive Radon measure, and P(u) ~ exp⁡αu (β) with α > 0 and β ≥ 1 or P(u) = u (p−1). Hindawi Publishing Corporation 2016 2016-05-17 /pmc/articles/PMC4886069/ /pubmed/27294190 http://dx.doi.org/10.1155/2016/5742063 Text en Copyright © 2016 Qiaoyu Tian et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Tian, Qiaoyu
Zhang, Shengzhi
Xu, Yonglin
Mu, Jia
Local Integral Estimates for Quasilinear Equations with Measure Data
title Local Integral Estimates for Quasilinear Equations with Measure Data
title_full Local Integral Estimates for Quasilinear Equations with Measure Data
title_fullStr Local Integral Estimates for Quasilinear Equations with Measure Data
title_full_unstemmed Local Integral Estimates for Quasilinear Equations with Measure Data
title_short Local Integral Estimates for Quasilinear Equations with Measure Data
title_sort local integral estimates for quasilinear equations with measure data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886069/
https://www.ncbi.nlm.nih.gov/pubmed/27294190
http://dx.doi.org/10.1155/2016/5742063
work_keys_str_mv AT tianqiaoyu localintegralestimatesforquasilinearequationswithmeasuredata
AT zhangshengzhi localintegralestimatesforquasilinearequationswithmeasuredata
AT xuyonglin localintegralestimatesforquasilinearequationswithmeasuredata
AT mujia localintegralestimatesforquasilinearequationswithmeasuredata