Cargando…
A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests
This paper proposed a novel voting ranking random forests (VRRF) method for solving hepatocellular carcinoma (HCC) image classification problem. Firstly, in preprocessing stage, this paper used bilateral filtering for hematoxylin-eosin (HE) pathological images. Next, this paper segmented the bilater...
Autores principales: | Xia, Bingbing, Jiang, Huiyan, Liu, Huiling, Yi, Dehui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886072/ https://www.ncbi.nlm.nih.gov/pubmed/27293477 http://dx.doi.org/10.1155/2016/2628463 |
Ejemplares similares
-
The Research of Feature Extraction Method of Liver Pathological Image Based on Multispatial Mapping and Statistical Properties
por: Liu, Huiling, et al.
Publicado: (2016) -
Building pathway clusters from Random Forests classification using class votes
por: Pang, Herbert, et al.
Publicado: (2008) -
Ranked choice voting for representative transcripts with TRaCE
por: Olson, Andrew J, et al.
Publicado: (2021) -
Ranking near-native candidate protein structures via random forest classification
por: Wu, Hongjie, et al.
Publicado: (2019) -
Topological Voting Method for Image Segmentation
por: Nguyen, Nga T. T., et al.
Publicado: (2022)