Cargando…
A New Approach to Handle Missing Covariate Data in Twin Research: With an Application to Educational Achievement Data
The often-used ACE model which decomposes phenotypic variance into additive genetic (A), common-environmental (C) and unique-environmental (E) parts can be extended to include covariates. Collection of these variables however often leads to a large amount of missing data, for example when self-repor...
Autores principales: | Schwabe, Inga, Boomsma, Dorret I., Zeeuw, Eveline L. de, Berg, Stéphanie M. van den |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886155/ https://www.ncbi.nlm.nih.gov/pubmed/26687147 http://dx.doi.org/10.1007/s10519-015-9771-1 |
Ejemplares similares
-
Comparison of Methods for Handling Missing Covariate Data
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Can We Validate the Results of Twin Studies? A Census-Based Study on the Heritability of Educational Achievement
por: Schwabe, Inga, et al.
Publicado: (2017) -
GE Covariance Through Phenotype to Environment Transmission: An Assessment in Longitudinal Twin Data and Application to Childhood Anxiety
por: Dolan, Conor V., et al.
Publicado: (2014) -
Mathematical Ability and Socio-Economic Background: IRT Modeling to Estimate Genotype by Environment Interaction
por: Schwabe, Inga, et al.
Publicado: (2017) -
Attention Deficit Hyperactivity Disorder Symptoms and Low Educational Achievement: Evidence Supporting A Causal Hypothesis
por: de Zeeuw, Eveline L., et al.
Publicado: (2017)