Cargando…

Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province

Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate...

Descripción completa

Detalles Bibliográficos
Autores principales: Rivera, Jesus, Canals, Miquel, Lastras, Galderic, Hermida, Nuria, Amblas, David, Arrese, Beatriz, Martín-Sosa, Pablo, Acosta, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886973/
https://www.ncbi.nlm.nih.gov/pubmed/27243626
http://dx.doi.org/10.1371/journal.pone.0156337
_version_ 1782434673673109504
author Rivera, Jesus
Canals, Miquel
Lastras, Galderic
Hermida, Nuria
Amblas, David
Arrese, Beatriz
Martín-Sosa, Pablo
Acosta, Juan
author_facet Rivera, Jesus
Canals, Miquel
Lastras, Galderic
Hermida, Nuria
Amblas, David
Arrese, Beatriz
Martín-Sosa, Pablo
Acosta, Juan
author_sort Rivera, Jesus
collection PubMed
description Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25–30 million years and was likely responsible for most of the 2,730 km(3) of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount’s summit. Sediment waves and cold-water coral (CWC) mounds on the bank summit plateau are the youngest features contributing to its final shaping, and may be indicative of internal wave effects. Numerous submarine canyons generally less than 10 km in length are incised on the bank’s flanks. The most developed, hierarchized canyon system runs southwest of the bank, where it merges with other canyons coming from the southern bulges attached to some sections of the seamount flanks. These bulges are postulated as having an intrusive origin, as no major headwall landslide scars have been detected and their role as deposition areas for the submarine canyons seems to be minor. The results presented document how geological processes in the past and recent to subrecent oceanographic conditions and associated active processes determined the current physiography, morphology and sedimentary patterns of Concepcion Bank, including the development and decline of CWC mounds The setting of the seamount in the regional crustal structure is also discussed.
format Online
Article
Text
id pubmed-4886973
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-48869732016-06-10 Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province Rivera, Jesus Canals, Miquel Lastras, Galderic Hermida, Nuria Amblas, David Arrese, Beatriz Martín-Sosa, Pablo Acosta, Juan PLoS One Research Article Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25–30 million years and was likely responsible for most of the 2,730 km(3) of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount’s summit. Sediment waves and cold-water coral (CWC) mounds on the bank summit plateau are the youngest features contributing to its final shaping, and may be indicative of internal wave effects. Numerous submarine canyons generally less than 10 km in length are incised on the bank’s flanks. The most developed, hierarchized canyon system runs southwest of the bank, where it merges with other canyons coming from the southern bulges attached to some sections of the seamount flanks. These bulges are postulated as having an intrusive origin, as no major headwall landslide scars have been detected and their role as deposition areas for the submarine canyons seems to be minor. The results presented document how geological processes in the past and recent to subrecent oceanographic conditions and associated active processes determined the current physiography, morphology and sedimentary patterns of Concepcion Bank, including the development and decline of CWC mounds The setting of the seamount in the regional crustal structure is also discussed. Public Library of Science 2016-05-31 /pmc/articles/PMC4886973/ /pubmed/27243626 http://dx.doi.org/10.1371/journal.pone.0156337 Text en © 2016 Rivera et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Rivera, Jesus
Canals, Miquel
Lastras, Galderic
Hermida, Nuria
Amblas, David
Arrese, Beatriz
Martín-Sosa, Pablo
Acosta, Juan
Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province
title Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province
title_full Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province
title_fullStr Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province
title_full_unstemmed Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province
title_short Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province
title_sort morphometry of concepcion bank: evidence of geological and biological processes on a large volcanic seamount of the canary islands seamount province
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886973/
https://www.ncbi.nlm.nih.gov/pubmed/27243626
http://dx.doi.org/10.1371/journal.pone.0156337
work_keys_str_mv AT riverajesus morphometryofconcepcionbankevidenceofgeologicalandbiologicalprocessesonalargevolcanicseamountofthecanaryislandsseamountprovince
AT canalsmiquel morphometryofconcepcionbankevidenceofgeologicalandbiologicalprocessesonalargevolcanicseamountofthecanaryislandsseamountprovince
AT lastrasgalderic morphometryofconcepcionbankevidenceofgeologicalandbiologicalprocessesonalargevolcanicseamountofthecanaryislandsseamountprovince
AT hermidanuria morphometryofconcepcionbankevidenceofgeologicalandbiologicalprocessesonalargevolcanicseamountofthecanaryislandsseamountprovince
AT amblasdavid morphometryofconcepcionbankevidenceofgeologicalandbiologicalprocessesonalargevolcanicseamountofthecanaryislandsseamountprovince
AT arresebeatriz morphometryofconcepcionbankevidenceofgeologicalandbiologicalprocessesonalargevolcanicseamountofthecanaryislandsseamountprovince
AT martinsosapablo morphometryofconcepcionbankevidenceofgeologicalandbiologicalprocessesonalargevolcanicseamountofthecanaryislandsseamountprovince
AT acostajuan morphometryofconcepcionbankevidenceofgeologicalandbiologicalprocessesonalargevolcanicseamountofthecanaryislandsseamountprovince