Cargando…
Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone
Tropospheric ozone (O(3)) is a global air pollutant that causes high economic damages by decreasing plant productivity. It enters the leaves through the stomata, generates reactive oxygen species, which subsequent decrease in photosynthesis, plant growth, and biomass accumulation. In order to identi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887494/ https://www.ncbi.nlm.nih.gov/pubmed/27313581 http://dx.doi.org/10.3389/fpls.2016.00713 |
_version_ | 1782434736022487040 |
---|---|
author | Gottardini, Elena Cristofori, Antonella Pellegrini, Elisa La Porta, Nicola Nali, Cristina Baldi, Paolo Sablok, Gaurav |
author_facet | Gottardini, Elena Cristofori, Antonella Pellegrini, Elisa La Porta, Nicola Nali, Cristina Baldi, Paolo Sablok, Gaurav |
author_sort | Gottardini, Elena |
collection | PubMed |
description | Tropospheric ozone (O(3)) is a global air pollutant that causes high economic damages by decreasing plant productivity. It enters the leaves through the stomata, generates reactive oxygen species, which subsequent decrease in photosynthesis, plant growth, and biomass accumulation. In order to identify genes that are important for conferring O(3) tolerance or sensitivity to plants, a suppression subtractive hybridization analysis was performed on the very sensitive woody shrub, Viburnum lantana, exposed to chronic O(3) treatment (60 ppb, 5 h d(−1) for 45 consecutive days). Transcript profiling and relative expression assessment were carried out in asymptomatic leaves, after 15 days of O(3) exposure. At the end of the experiment symptoms were observed on all treated leaves and plants, with an injured leaf area per plant accounting for 16.7% of the total surface. Cloned genes were sequenced by 454-pyrosequencing and transcript profiling and relative expression assessment were carried out on sequenced reads. A total of 38,800 and 12,495 high quality reads obtained in control and O(3)-treated libraries, respectively (average length of 319 ± 156.7 and 255 ± 107.4 bp). The Ensembl transcriptome yielded a total of 1241 unigenes with a total sequence length of 389,126 bp and an average length size of 389 bp (guanine-cytosine content = 49.9%). mRNA abundance was measured by reads per kilobase per million and 41 and 37 ensembl unigenes showed up- and down-regulation respectively. Unigenes functionally associated to photosynthesis and carbon utilization were repressed, demonstrating the deleterious effect of O(3) exposure. Unigenes functionally associated to heat-shock proteins and glutathione were concurrently induced, suggesting the role of thylakoid-localized proteins and antioxidant-detoxification pathways as an effective strategy for responding to O(3). Gene Ontology analysis documented a differential expression of co-regulated transcripts for several functional categories, including specific transcription factors (MYB and WRKY). This study demonstrates that a complex sequence of events takes place in the cells at intracellular and membrane level following O(3) exposure and elucidates the effects of this oxidative stress on the transcriptional machinery of the non-model plant species V. lantana, with the final aim to provide the molecular supportive knowledge for the use of this plant as O(3)-bioindicator. |
format | Online Article Text |
id | pubmed-4887494 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48874942016-06-16 Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone Gottardini, Elena Cristofori, Antonella Pellegrini, Elisa La Porta, Nicola Nali, Cristina Baldi, Paolo Sablok, Gaurav Front Plant Sci Plant Science Tropospheric ozone (O(3)) is a global air pollutant that causes high economic damages by decreasing plant productivity. It enters the leaves through the stomata, generates reactive oxygen species, which subsequent decrease in photosynthesis, plant growth, and biomass accumulation. In order to identify genes that are important for conferring O(3) tolerance or sensitivity to plants, a suppression subtractive hybridization analysis was performed on the very sensitive woody shrub, Viburnum lantana, exposed to chronic O(3) treatment (60 ppb, 5 h d(−1) for 45 consecutive days). Transcript profiling and relative expression assessment were carried out in asymptomatic leaves, after 15 days of O(3) exposure. At the end of the experiment symptoms were observed on all treated leaves and plants, with an injured leaf area per plant accounting for 16.7% of the total surface. Cloned genes were sequenced by 454-pyrosequencing and transcript profiling and relative expression assessment were carried out on sequenced reads. A total of 38,800 and 12,495 high quality reads obtained in control and O(3)-treated libraries, respectively (average length of 319 ± 156.7 and 255 ± 107.4 bp). The Ensembl transcriptome yielded a total of 1241 unigenes with a total sequence length of 389,126 bp and an average length size of 389 bp (guanine-cytosine content = 49.9%). mRNA abundance was measured by reads per kilobase per million and 41 and 37 ensembl unigenes showed up- and down-regulation respectively. Unigenes functionally associated to photosynthesis and carbon utilization were repressed, demonstrating the deleterious effect of O(3) exposure. Unigenes functionally associated to heat-shock proteins and glutathione were concurrently induced, suggesting the role of thylakoid-localized proteins and antioxidant-detoxification pathways as an effective strategy for responding to O(3). Gene Ontology analysis documented a differential expression of co-regulated transcripts for several functional categories, including specific transcription factors (MYB and WRKY). This study demonstrates that a complex sequence of events takes place in the cells at intracellular and membrane level following O(3) exposure and elucidates the effects of this oxidative stress on the transcriptional machinery of the non-model plant species V. lantana, with the final aim to provide the molecular supportive knowledge for the use of this plant as O(3)-bioindicator. Frontiers Media S.A. 2016-06-01 /pmc/articles/PMC4887494/ /pubmed/27313581 http://dx.doi.org/10.3389/fpls.2016.00713 Text en Copyright © 2016 Gottardini, Cristofori, Pellegrini, La Porta, Nali, Baldi and Sablok. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Gottardini, Elena Cristofori, Antonella Pellegrini, Elisa La Porta, Nicola Nali, Cristina Baldi, Paolo Sablok, Gaurav Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone |
title | Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone |
title_full | Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone |
title_fullStr | Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone |
title_full_unstemmed | Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone |
title_short | Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone |
title_sort | suppression substractive hybridization and ngs reveal differential transcriptome expression profiles in wayfaring tree (viburnum lantana l.) treated with ozone |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887494/ https://www.ncbi.nlm.nih.gov/pubmed/27313581 http://dx.doi.org/10.3389/fpls.2016.00713 |
work_keys_str_mv | AT gottardinielena suppressionsubstractivehybridizationandngsrevealdifferentialtranscriptomeexpressionprofilesinwayfaringtreeviburnumlantanaltreatedwithozone AT cristoforiantonella suppressionsubstractivehybridizationandngsrevealdifferentialtranscriptomeexpressionprofilesinwayfaringtreeviburnumlantanaltreatedwithozone AT pellegrinielisa suppressionsubstractivehybridizationandngsrevealdifferentialtranscriptomeexpressionprofilesinwayfaringtreeviburnumlantanaltreatedwithozone AT laportanicola suppressionsubstractivehybridizationandngsrevealdifferentialtranscriptomeexpressionprofilesinwayfaringtreeviburnumlantanaltreatedwithozone AT nalicristina suppressionsubstractivehybridizationandngsrevealdifferentialtranscriptomeexpressionprofilesinwayfaringtreeviburnumlantanaltreatedwithozone AT baldipaolo suppressionsubstractivehybridizationandngsrevealdifferentialtranscriptomeexpressionprofilesinwayfaringtreeviburnumlantanaltreatedwithozone AT sablokgaurav suppressionsubstractivehybridizationandngsrevealdifferentialtranscriptomeexpressionprofilesinwayfaringtreeviburnumlantanaltreatedwithozone |