Cargando…
Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features
BACKGROUND: Identification of splice sites is essential for annotation of genes. Though existing approaches have achieved an acceptable level of accuracy, still there is a need for further improvement. Besides, most of the approaches are species-specific and hence it is required to develop approache...
Autores principales: | Meher, Prabina Kumar, Sahu, Tanmaya Kumar, Rao, A. R., Wahi, S. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888255/ https://www.ncbi.nlm.nih.gov/pubmed/27252772 http://dx.doi.org/10.1186/s13015-016-0078-4 |
Ejemplares similares
-
Prediction of donor splice sites using random forest with a new sequence encoding approach
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
A statistical approach for 5′ splice site prediction using short sequence motifs and without encoding sequence data
por: Meher, Prabina Kumar, et al.
Publicado: (2014) -
HRGPred: Prediction of herbicide resistant genes with k-mer nucleotide compositional features and support vector machine
por: Meher, Prabina Kumar, et al.
Publicado: (2019) -
ir-HSP: Improved Recognition of Heat Shock Proteins, Their Families and Sub-types Based On g-Spaced Di-peptide Features and Support Vector Machine
por: Meher, Prabina K., et al.
Publicado: (2018) -
nifPred: Proteome-Wide Identification and Categorization of Nitrogen-Fixation Proteins of Diaztrophs Based on Composition-Transition-Distribution Features Using Support Vector Machine
por: Meher, Prabina K., et al.
Publicado: (2018)