Cargando…
Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities
Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extrace...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888457/ https://www.ncbi.nlm.nih.gov/pubmed/27234584 http://dx.doi.org/10.1042/BJ20151154 |
_version_ | 1782434852447977472 |
---|---|
author | Boon, Lise Ugarte-Berzal, Estefania Vandooren, Jennifer Opdenakker, Ghislain |
author_facet | Boon, Lise Ugarte-Berzal, Estefania Vandooren, Jennifer Opdenakker, Ghislain |
author_sort | Boon, Lise |
collection | PubMed |
description | Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extracellular inhibition. Slight imbalances may result in the initiation or progression of specific disease states, such as cancer and pathological inflammation. As glycosylation modifies the structures and functions of glycoproteins and many MMPs contain N- or O-linked oligosaccharides, we examine, compare and evaluate the evidence for whether glycosylation affects MMP catalytic activity and other functions. It is interesting that the catalytic sites of MMPs do not contain O-linked glycans, but instead possess a conserved N-linked glycosylation site. Both N- and O-linked oligosaccharides, attached to specific protein domains, endow these domains with novel functions such as the binding to lectins, cell-surface receptors and tissue inhibitors of metalloproteases (TIMPs). Validated glycobiological data on N- and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-linked structures of membrane-type 1 MMP/MMP-14 indicate that in-depth research of other MMPs may yield important insights, e.g. about subcellular localizations and functions within macromolecular complexes. |
format | Online Article Text |
id | pubmed-4888457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48884572016-06-08 Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities Boon, Lise Ugarte-Berzal, Estefania Vandooren, Jennifer Opdenakker, Ghislain Biochem J Review Articles Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extracellular inhibition. Slight imbalances may result in the initiation or progression of specific disease states, such as cancer and pathological inflammation. As glycosylation modifies the structures and functions of glycoproteins and many MMPs contain N- or O-linked oligosaccharides, we examine, compare and evaluate the evidence for whether glycosylation affects MMP catalytic activity and other functions. It is interesting that the catalytic sites of MMPs do not contain O-linked glycans, but instead possess a conserved N-linked glycosylation site. Both N- and O-linked oligosaccharides, attached to specific protein domains, endow these domains with novel functions such as the binding to lectins, cell-surface receptors and tissue inhibitors of metalloproteases (TIMPs). Validated glycobiological data on N- and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-linked structures of membrane-type 1 MMP/MMP-14 indicate that in-depth research of other MMPs may yield important insights, e.g. about subcellular localizations and functions within macromolecular complexes. Portland Press Ltd. 2016-05-27 2016-06-01 /pmc/articles/PMC4888457/ /pubmed/27234584 http://dx.doi.org/10.1042/BJ20151154 Text en © 2016 Authors; published by Portland Press Limited |
spellingShingle | Review Articles Boon, Lise Ugarte-Berzal, Estefania Vandooren, Jennifer Opdenakker, Ghislain Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities |
title | Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities |
title_full | Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities |
title_fullStr | Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities |
title_full_unstemmed | Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities |
title_short | Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities |
title_sort | glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888457/ https://www.ncbi.nlm.nih.gov/pubmed/27234584 http://dx.doi.org/10.1042/BJ20151154 |
work_keys_str_mv | AT boonlise glycosylationofmatrixmetalloproteasesandtissueinhibitorspresentstatechallengesandopportunities AT ugarteberzalestefania glycosylationofmatrixmetalloproteasesandtissueinhibitorspresentstatechallengesandopportunities AT vandoorenjennifer glycosylationofmatrixmetalloproteasesandtissueinhibitorspresentstatechallengesandopportunities AT opdenakkerghislain glycosylationofmatrixmetalloproteasesandtissueinhibitorspresentstatechallengesandopportunities |