Cargando…
Flexible characterization of animal movement pattern using net squared displacement and a latent state model
BACKGROUND: Characterizing the movement patterns of animals is an important step in understanding their ecology. Various methods have been developed for classifying animal movement at both coarse (e.g., migratory vs. sedentary behavior) and fine (e.g., resting vs. foraging) scales. A popular approac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888472/ https://www.ncbi.nlm.nih.gov/pubmed/27252856 http://dx.doi.org/10.1186/s40462-016-0080-y |
_version_ | 1782434855667105792 |
---|---|
author | Bastille-Rousseau, Guillaume Potts, Jonathan R. Yackulic, Charles B. Frair, Jacqueline L. Ellington, E. Hance Blake, Stephen |
author_facet | Bastille-Rousseau, Guillaume Potts, Jonathan R. Yackulic, Charles B. Frair, Jacqueline L. Ellington, E. Hance Blake, Stephen |
author_sort | Bastille-Rousseau, Guillaume |
collection | PubMed |
description | BACKGROUND: Characterizing the movement patterns of animals is an important step in understanding their ecology. Various methods have been developed for classifying animal movement at both coarse (e.g., migratory vs. sedentary behavior) and fine (e.g., resting vs. foraging) scales. A popular approach for classifying movements at coarse resolutions involves fitting time series of net-squared displacement (NSD) to models representing different conceptualizations of coarse movement strategies (i.e., migration, nomadism, sedentarism, etc.). However, the performance of this method in classifying actual (as opposed to simulated) animal movements has been mixed. Here, we develop a more flexible method that uses the same NSD input, but relies on an underlying discrete latent state model. Using simulated data, we first assess how well patterns in the number of transitions between modes of movement and the duration of time spent in a mode classify movement strategies. We then apply our approach to elucidate variability in the movement strategies of eight giant tortoises (Chelonoidis sp.) using a multi-year (2009–2014) GPS dataset from three different Galapagos Islands. RESULTS: With respect to patterns of time spent and the number of transitions between modes, our approach out-performed previous efforts to distinguish among migration, dispersal, and sedentary behavior. We documented marked inter-individual variation in giant tortoise movement strategies, with behaviors indicating migration, dispersal, nomadism and sedentarism, as well as hybrid behaviors such as “exploratory residence”. CONCLUSIONS: Distilling complex animal movement into discrete modes remains a fundamental challenge in movement ecology, a problem made more complex by the ever-longer duration, ever-finer resolution, and gap-ridden trajectories recorded by GPS devices. By clustering into modes, we derived information on the time spent within one mode and the number of transitions between modes which enabled finer differentiation of movement strategies over previous methods. Ultimately, the techniques developed here address limitations of previous approaches and provide greater insights with respect to characterization of movement strategies across scales by more fully utilizing long-term GPS telemetry datasets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40462-016-0080-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4888472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48884722016-06-02 Flexible characterization of animal movement pattern using net squared displacement and a latent state model Bastille-Rousseau, Guillaume Potts, Jonathan R. Yackulic, Charles B. Frair, Jacqueline L. Ellington, E. Hance Blake, Stephen Mov Ecol Research BACKGROUND: Characterizing the movement patterns of animals is an important step in understanding their ecology. Various methods have been developed for classifying animal movement at both coarse (e.g., migratory vs. sedentary behavior) and fine (e.g., resting vs. foraging) scales. A popular approach for classifying movements at coarse resolutions involves fitting time series of net-squared displacement (NSD) to models representing different conceptualizations of coarse movement strategies (i.e., migration, nomadism, sedentarism, etc.). However, the performance of this method in classifying actual (as opposed to simulated) animal movements has been mixed. Here, we develop a more flexible method that uses the same NSD input, but relies on an underlying discrete latent state model. Using simulated data, we first assess how well patterns in the number of transitions between modes of movement and the duration of time spent in a mode classify movement strategies. We then apply our approach to elucidate variability in the movement strategies of eight giant tortoises (Chelonoidis sp.) using a multi-year (2009–2014) GPS dataset from three different Galapagos Islands. RESULTS: With respect to patterns of time spent and the number of transitions between modes, our approach out-performed previous efforts to distinguish among migration, dispersal, and sedentary behavior. We documented marked inter-individual variation in giant tortoise movement strategies, with behaviors indicating migration, dispersal, nomadism and sedentarism, as well as hybrid behaviors such as “exploratory residence”. CONCLUSIONS: Distilling complex animal movement into discrete modes remains a fundamental challenge in movement ecology, a problem made more complex by the ever-longer duration, ever-finer resolution, and gap-ridden trajectories recorded by GPS devices. By clustering into modes, we derived information on the time spent within one mode and the number of transitions between modes which enabled finer differentiation of movement strategies over previous methods. Ultimately, the techniques developed here address limitations of previous approaches and provide greater insights with respect to characterization of movement strategies across scales by more fully utilizing long-term GPS telemetry datasets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40462-016-0080-y) contains supplementary material, which is available to authorized users. BioMed Central 2016-06-01 /pmc/articles/PMC4888472/ /pubmed/27252856 http://dx.doi.org/10.1186/s40462-016-0080-y Text en © Bastille-Rousseau et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Bastille-Rousseau, Guillaume Potts, Jonathan R. Yackulic, Charles B. Frair, Jacqueline L. Ellington, E. Hance Blake, Stephen Flexible characterization of animal movement pattern using net squared displacement and a latent state model |
title | Flexible characterization of animal movement pattern using net squared displacement and a latent state model |
title_full | Flexible characterization of animal movement pattern using net squared displacement and a latent state model |
title_fullStr | Flexible characterization of animal movement pattern using net squared displacement and a latent state model |
title_full_unstemmed | Flexible characterization of animal movement pattern using net squared displacement and a latent state model |
title_short | Flexible characterization of animal movement pattern using net squared displacement and a latent state model |
title_sort | flexible characterization of animal movement pattern using net squared displacement and a latent state model |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888472/ https://www.ncbi.nlm.nih.gov/pubmed/27252856 http://dx.doi.org/10.1186/s40462-016-0080-y |
work_keys_str_mv | AT bastillerousseauguillaume flexiblecharacterizationofanimalmovementpatternusingnetsquareddisplacementandalatentstatemodel AT pottsjonathanr flexiblecharacterizationofanimalmovementpatternusingnetsquareddisplacementandalatentstatemodel AT yackuliccharlesb flexiblecharacterizationofanimalmovementpatternusingnetsquareddisplacementandalatentstatemodel AT frairjacquelinel flexiblecharacterizationofanimalmovementpatternusingnetsquareddisplacementandalatentstatemodel AT ellingtonehance flexiblecharacterizationofanimalmovementpatternusingnetsquareddisplacementandalatentstatemodel AT blakestephen flexiblecharacterizationofanimalmovementpatternusingnetsquareddisplacementandalatentstatemodel |