Cargando…
Is lumbar facet joint tropism developmental or secondary to degeneration? An international, large-scale multicenter study by the AOSpine Asia Pacific Research Collaboration Consortium
BACKGROUND: Facet joint tropism is asymmetry in orientation of the bilateral facets. Some studies have shown that tropism may increase the risk of disc degeneration and herniations, as well as degenerative spondylolisthesis (DS). It remains controversial whether tropism is a pre-existing development...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888515/ https://www.ncbi.nlm.nih.gov/pubmed/27252985 http://dx.doi.org/10.1186/s13013-016-0062-2 |
Sumario: | BACKGROUND: Facet joint tropism is asymmetry in orientation of the bilateral facets. Some studies have shown that tropism may increase the risk of disc degeneration and herniations, as well as degenerative spondylolisthesis (DS). It remains controversial whether tropism is a pre-existing developmental phenomena or secondary to progressive remodeling of the joint structure due to degenerative changes. As such, the following study addressed the occurrence of tropism of the lower lumbar spine (i.e. L3–S1) in a degenerative spondylolisthesis patient model. METHODS: An international, multi-center cross-sectional study that consisted of 349 patients with single level DS recruited from 33 spine institutes in the Asia Pacific region was performed. Axial MRI/CT from L3–S1 were utilized to assess left and right facet joint sagittal angulation in relation to the coronal plane. The angulation difference between the bilateral facets was obtained. Tropism was noted if there was 8° or greater angulation difference between the facet joints. Tropism was noted at levels of DS and compared to immediate adjacent and distal non-DS levels, if applicable, to the index level. Age, sex-type and body mass index (BMI) were also noted and assessed in relation to tropism. RESULTS: Of the 349 subjects, there were 63.0 % females, the mean age was 61.8 years and the mean BMI was 25.6 kg/m(2). Overall, 9.7, 76.5 and 13.8 % had L3–L4, L4–L5 and L5–S1 DS, respectively. Tropism was present in 47.1, 50.6 and 31.3 % of L3–L4, L4–L5 and L5–S1 of levels with DS, respectively. Tropism involved 33.3 to 50.0 % and 33.3 to 58.8 % of the immediate adjacent and most distal non-DS levels from the DS level, respectively. Patient demographics were not found to be significantly related to tropism at any level (p > 0.05). CONCLUSIONS: To the authors’ knowledge, this is one of the largest studies conducted, in particular in an Asian population, addressing facet joint tropism. Although levels with DS were noted to have tropism, immediate adjacent and distal levels with no DS also exhibited tropism, and were not related to age and other patient demographics. This study suggests that facet joint tropism or perhaps subsets of facet joint orientation may have a pre-disposed orientation that may be developmental in origin or a combination with secondary changes due to degenerative/slip effects. The presence of tropism should be noted in all imaging assessments, which may have implications in treatment decision-making, prognostication of disease progression, and predictive modeling. Having a deeper understanding of such concepts may further elaborate on the precision phenotyping of the facets and their role in more personalized spine care. Additional prospective and controlled studies are needed to further validate the findings. |
---|