Cargando…

The 1996 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviole...

Descripción completa

Detalles Bibliográficos
Autores principales: Early, Edward, Thompson, Ambler, Johnson, Carol, DeLuisi, John, Disterhoft, Patrick, Wardle, David, Wu, Edmund, Mou, Wanfeng, Ehramjian, James, Tusson, John, Mestechkina, Tanya, Beaubian, Mark, Gibson, James, Hayes, Douglass
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889314/
https://www.ncbi.nlm.nih.gov/pubmed/28009358
http://dx.doi.org/10.6028/jres.103.028
Descripción
Sumario:Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the third North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 17–25, 1996 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology (NIST) and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency; the National Science Foundation; the Smithsonian Environmental Research Center; the Department of Agriculture; and the Atmospheric Environment Service, Canada. The spectral irradiances of participants’ calibrated standard lamps were measured at NIST prior to the Intercomparison. The spectral irradiance scales used by the participants agreed with the NIST scale within the combined uncertainties, and for all lamps the spectral irradiance in the horizontal position was lower than that in the vertical position. Instruments were characterized for wavelength uncertainty, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with NIST standard lamps operating in specially designed field calibration units. The spectral irradiance responsivity demonstrated instabilities for some instruments. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamps, the measured solar irradiances had some unexplained systematic differences between instruments.