Cargando…

Sdt97: A Point Mutation in the 5′ Untranslated Region Confers Semidwarfism in Rice

Semidwarfism is an important agronomic trait in rice breeding programs. The semidwarf mutant gene Sdt97 was previously described. However, the molecular mechanism underlying the mutant is yet to be elucidated. In this study, we identified the mutant gene by a map-based cloning method. Using a residu...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Jiping, Han, Zhengshu, Han, Aonan, Liu, Xuejun, Zhang, Shiyong, Fu, Binying, Hu, Jun, Su, Jingping, Li, Shaoqing, Wang, Shengjun, Zhu, Yingguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889646/
https://www.ncbi.nlm.nih.gov/pubmed/27172200
http://dx.doi.org/10.1534/g3.116.028720
Descripción
Sumario:Semidwarfism is an important agronomic trait in rice breeding programs. The semidwarf mutant gene Sdt97 was previously described. However, the molecular mechanism underlying the mutant is yet to be elucidated. In this study, we identified the mutant gene by a map-based cloning method. Using a residual heterozygous line (RHL) population, Sdt97 was mapped to the long arm of chromosome 6 in the interval of nearly 60 kb between STS marker N6 and SNP marker N16 within the PAC clone P0453H04. Sequencing of the candidate genes in the target region revealed that a base transversion from G to C occurred in the 5′ untranslated region of Sdt97. qRT-PCR results confirmed that the transversion induced an obvious change in the expression pattern of Sdt97 at different growth and developmental stages. Plants transgenic for Sdt97 resulted in the restoration of semidwarfism of the mutant phenotype, or displayed a greater dwarf phenotype than the mutant. Our results indicate that a point mutation in the 5′ untranslated region of Sdt97 confers semidwarfism in rice. Functional analysis of Sdt97 will open a new field of study for rice semidwarfism, and also expand our knowledge of the molecular mechanism of semidwarfism in rice.