Cargando…
A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification
The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889801/ https://www.ncbi.nlm.nih.gov/pubmed/27298619 http://dx.doi.org/10.1155/2016/8073279 |
_version_ | 1782435018263494656 |
---|---|
author | Zhao, Jing Lin, Lo-Yi Lin, Chih-Min |
author_facet | Zhao, Jing Lin, Lo-Yi Lin, Chih-Min |
author_sort | Zhao, Jing |
collection | PubMed |
description | The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN). To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs) and intuitionistic fuzzy cross-entropy (IFCE) with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories. |
format | Online Article Text |
id | pubmed-4889801 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-48898012016-06-13 A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification Zhao, Jing Lin, Lo-Yi Lin, Chih-Min Comput Intell Neurosci Research Article The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN). To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs) and intuitionistic fuzzy cross-entropy (IFCE) with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories. Hindawi Publishing Corporation 2016 2016-05-19 /pmc/articles/PMC4889801/ /pubmed/27298619 http://dx.doi.org/10.1155/2016/8073279 Text en Copyright © 2016 Jing Zhao et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhao, Jing Lin, Lo-Yi Lin, Chih-Min A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification |
title | A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification |
title_full | A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification |
title_fullStr | A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification |
title_full_unstemmed | A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification |
title_short | A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification |
title_sort | general fuzzy cerebellar model neural network multidimensional classifier using intuitionistic fuzzy sets for medical identification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889801/ https://www.ncbi.nlm.nih.gov/pubmed/27298619 http://dx.doi.org/10.1155/2016/8073279 |
work_keys_str_mv | AT zhaojing ageneralfuzzycerebellarmodelneuralnetworkmultidimensionalclassifierusingintuitionisticfuzzysetsformedicalidentification AT linloyi ageneralfuzzycerebellarmodelneuralnetworkmultidimensionalclassifierusingintuitionisticfuzzysetsformedicalidentification AT linchihmin ageneralfuzzycerebellarmodelneuralnetworkmultidimensionalclassifierusingintuitionisticfuzzysetsformedicalidentification AT zhaojing generalfuzzycerebellarmodelneuralnetworkmultidimensionalclassifierusingintuitionisticfuzzysetsformedicalidentification AT linloyi generalfuzzycerebellarmodelneuralnetworkmultidimensionalclassifierusingintuitionisticfuzzysetsformedicalidentification AT linchihmin generalfuzzycerebellarmodelneuralnetworkmultidimensionalclassifierusingintuitionisticfuzzysetsformedicalidentification |