Cargando…
Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in (L)-cysteine-capped alloyed quaternary CdZnTeS quantum dots
The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890122/ https://www.ncbi.nlm.nih.gov/pubmed/27250067 http://dx.doi.org/10.1038/srep27288 |
Sumario: | The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new (L)-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed Cd(x)Zn(y)TeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped (L)-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27–61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72–93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying. |
---|