Cargando…
Data augmentation for models based on rejection sampling
We present a data augmentation scheme to perform Markov chain Monte Carlo inference for models where data generation involves a rejection sampling algorithm. Our idea is a simple scheme to instantiate the rejected proposals preceding each data point. The resulting joint probability over observed and...
Autores principales: | Rao, Vinayak, Lin, Lizhen, Dunson, David B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890134/ https://www.ncbi.nlm.nih.gov/pubmed/27279660 http://dx.doi.org/10.1093/biomet/asw005 |
Ejemplares similares
-
An adaptive rejection sampler for sampling from the Wiener diffusion model
por: Hartmann, Raphael, et al.
Publicado: (2022) -
Bayesian inference on quasi-sparse count data
por: Datta, Jyotishka, et al.
Publicado: (2016) -
Spatial Multivariate Trees for Big Data Bayesian Regression
por: Peruzzi, Michele, et al.
Publicado: (2022) -
Random Effect and Latent Variable Model Selection
por: Dunson, David B
Publicado: (2008) -
Nonparametric graphical model for counts
por: Roy, Arkaprava, et al.
Publicado: (2020)