Cargando…

Systematic analysis of the molecular mechanism underlying atherosclerosis using a text mining approach

BACKGROUND: Atherosclerosis is one of the common health threats all over the world. It is a complex heritable disease that affects arterial blood vessels. Chronic inflammatory response plays an important role in atherogenesis. There has been little success in fully identifying functionally important...

Descripción completa

Detalles Bibliográficos
Autores principales: Xi, Dan, Zhao, Jinzhen, Lai, Wenyan, Guo, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890502/
https://www.ncbi.nlm.nih.gov/pubmed/27251057
http://dx.doi.org/10.1186/s40246-016-0075-1
Descripción
Sumario:BACKGROUND: Atherosclerosis is one of the common health threats all over the world. It is a complex heritable disease that affects arterial blood vessels. Chronic inflammatory response plays an important role in atherogenesis. There has been little success in fully identifying functionally important genes in the pathogenesis of atherosclerosis. RESULTS: In the present study, we performed a systematic analysis of atherosclerosis-related genes using text mining. We identified a total of 1312 genes. Gene ontology (GO) analysis revealed that a total of 35 terms exhibited significance (p < 0.05) as overrepresented terms, indicating that atherosclerosis invokes many genes with a wide range of different functions. Pathway analysis demonstrated that the most highly enriched pathway is the Toll-like receptor signaling pathway. Finally, through gene network analysis, we prioritized 48 genes using the hub gene method. CONCLUSIONS: Our study provides a valuable resource for the in-depth understanding of the mechanism underlying atherosclerosis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40246-016-0075-1) contains supplementary material, which is available to authorized users.