Cargando…
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obta...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890616/ https://www.ncbi.nlm.nih.gov/pubmed/26886976 http://dx.doi.org/10.1109/TMI.2016.2528162 |
Ejemplares similares
-
Comparative approach to different convolutional neural network (CNN) architectures applied to human behavior detection
por: Shirabayashi, Juliana Verga, et al.
Publicado: (2023) -
CNN-CNN: Dual Convolutional Neural Network Approach for Feature Selection and Attack Detection on Internet of Things Networks
por: Alabsi, Basim Ahmad, et al.
Publicado: (2023) -
Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN)
por: Heenaye-Mamode Khan, Maleika, et al.
Publicado: (2021) -
Top Quark Tagging Using Convolutional Neural Network (CNN)
por: Beshr, Aya
Publicado: (2019) -
CNN-MGP: Convolutional Neural Networks for Metagenomics Gene Prediction
por: Al-Ajlan, Amani, et al.
Publicado: (2018)