Cargando…

Adipose-Derived Stromal Vascular Fraction Differentially Expands Breast Progenitors in Tissue Adjacent to Tumors Compared to Healthy Breast Tissue

BACKGROUND: Autologous fat grafts supplemented with adipose-derived stromal vascular fraction are used in reconstructive and cosmetic breast procedures. Stromal vascular fraction contains adipose-derived stem cells that are thought to encourage wound healing, tissue regeneration, and graft retention...

Descripción completa

Detalles Bibliográficos
Autores principales: Chatterjee, Sumanta, Laliberte, Mike, Blelloch, Sarah, Ratanshi, Imran, Safneck, Janice, Buchel, Ed, Raouf, Afshin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890821/
https://www.ncbi.nlm.nih.gov/pubmed/26090768
http://dx.doi.org/10.1097/PRS.0000000000001635
Descripción
Sumario:BACKGROUND: Autologous fat grafts supplemented with adipose-derived stromal vascular fraction are used in reconstructive and cosmetic breast procedures. Stromal vascular fraction contains adipose-derived stem cells that are thought to encourage wound healing, tissue regeneration, and graft retention. Although use of stromal vascular fraction has provided exciting perspectives for aesthetic procedures, no studies have yet been conducted to determine whether its cells contribute to breast tissue regeneration. The authors examined the effect of these cells on the expansion of human breast epithelial progenitors. METHODS: From patients undergoing reconstructive breast surgery following mastectomies, abdominal fat, matching tissue adjacent to breast tumors, and the contralateral non–tumor-containing breast tissue were obtained. Ex vivo co-cultures using breast epithelial cells and the stromal vascular fraction cells were used to study the expansion potential of breast progenitors. Breast reduction samples were collected as a source of healthy breast cells. RESULTS: The authors observed that progenitors present in healthy breast tissue or contralateral non–tumor-containing breast tissue showed significant and robust expansion in the presence of stromal vascular fraction (5.2- and 4.8-fold, respectively). Whereas the healthy progenitors expanded up to 3-fold without the stromal vascular fraction cells, the expansion of tissue adjacent to breast tumor progenitors required the presence of stromal vascular fraction cells, leading to a 7-fold expansion, which was significantly higher than the expansion of healthy progenitors with stromal vascular fraction. CONCLUSIONS: The use of stromal vascular fraction might be more beneficial to reconstructive operations following mastectomies compared with cosmetic corrections of the healthy breast. Future studies are required to examine the potential risk factors associated with its use. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.