Cargando…
Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells
Clinical studies evaluating targeted BRAFV600E inhibitors in advanced thyroid cancer patients are currently underway. Vemurafenib (BRAFV600E inhibitor) monotherapy has shown promising results thus far, although development of resistance is a clinical challenge. The objective of this study was to cha...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890996/ https://www.ncbi.nlm.nih.gov/pubmed/26735176 http://dx.doi.org/10.18632/oncotarget.6779 |
_version_ | 1782435197798580224 |
---|---|
author | Hanly, Elyse K. Tuli, Neha Y. Bednarczyk, Robert B. Suriano, Robert Geliebter, Jan Moscatello, Augustine L. Darzynkiewicz, Zbigniew Tiwari, Raj K. |
author_facet | Hanly, Elyse K. Tuli, Neha Y. Bednarczyk, Robert B. Suriano, Robert Geliebter, Jan Moscatello, Augustine L. Darzynkiewicz, Zbigniew Tiwari, Raj K. |
author_sort | Hanly, Elyse K. |
collection | PubMed |
description | Clinical studies evaluating targeted BRAFV600E inhibitors in advanced thyroid cancer patients are currently underway. Vemurafenib (BRAFV600E inhibitor) monotherapy has shown promising results thus far, although development of resistance is a clinical challenge. The objective of this study was to characterize development of resistance to BRAFV600E inhibition and to identify targets for effective combination therapy. We created a line of BCPAP papillary thyroid cancer cells resistant to vemurafenib by treating with increasing concentrations of the drug. The resistant BCPAP line was characterized and compared to its sensitive counterpart with respect to signaling molecules thought to be directly related to resistance. Expression and phosphorylation of several critical proteins were analyzed by Western blotting and dimerization was evaluated by immunoprecipitation. Resistance to vemurafenib in BCPAP appeared to be mediated by constitutive overexpression of phospho-ERK and by resistance to inhibition of both phospho-mTOR and phospho-S6 ribosomal protein after vemurafenib treatment. Expression of potential alternative signaling molecule, CRAF, was not increased in the resistant line, although formation of CRAF dimers appeared increased. Expression of membrane receptors HER2 and HER3 was greatly amplified in the resistant cancer cells. Papillary thyroid cancer cells were capable of overcoming targeted BRAFV600E inhibition by rewiring of cell signal pathways in response to prolonged vemurafenib therapy. Our study suggests that in vitro culture of cancer cells may be useful in assessing molecular resistance pathways. Potential therapies in advanced thyroid cancer patients may combine vemurafenib with inhibitors of CRAF, HER2/HER3, ERK, and/or mTOR to delay or abort development of resistance. |
format | Online Article Text |
id | pubmed-4890996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-48909962016-06-20 Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells Hanly, Elyse K. Tuli, Neha Y. Bednarczyk, Robert B. Suriano, Robert Geliebter, Jan Moscatello, Augustine L. Darzynkiewicz, Zbigniew Tiwari, Raj K. Oncotarget Research Paper Clinical studies evaluating targeted BRAFV600E inhibitors in advanced thyroid cancer patients are currently underway. Vemurafenib (BRAFV600E inhibitor) monotherapy has shown promising results thus far, although development of resistance is a clinical challenge. The objective of this study was to characterize development of resistance to BRAFV600E inhibition and to identify targets for effective combination therapy. We created a line of BCPAP papillary thyroid cancer cells resistant to vemurafenib by treating with increasing concentrations of the drug. The resistant BCPAP line was characterized and compared to its sensitive counterpart with respect to signaling molecules thought to be directly related to resistance. Expression and phosphorylation of several critical proteins were analyzed by Western blotting and dimerization was evaluated by immunoprecipitation. Resistance to vemurafenib in BCPAP appeared to be mediated by constitutive overexpression of phospho-ERK and by resistance to inhibition of both phospho-mTOR and phospho-S6 ribosomal protein after vemurafenib treatment. Expression of potential alternative signaling molecule, CRAF, was not increased in the resistant line, although formation of CRAF dimers appeared increased. Expression of membrane receptors HER2 and HER3 was greatly amplified in the resistant cancer cells. Papillary thyroid cancer cells were capable of overcoming targeted BRAFV600E inhibition by rewiring of cell signal pathways in response to prolonged vemurafenib therapy. Our study suggests that in vitro culture of cancer cells may be useful in assessing molecular resistance pathways. Potential therapies in advanced thyroid cancer patients may combine vemurafenib with inhibitors of CRAF, HER2/HER3, ERK, and/or mTOR to delay or abort development of resistance. Impact Journals LLC 2015-12-28 /pmc/articles/PMC4890996/ /pubmed/26735176 http://dx.doi.org/10.18632/oncotarget.6779 Text en Copyright: © 2016 Hanly et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Hanly, Elyse K. Tuli, Neha Y. Bednarczyk, Robert B. Suriano, Robert Geliebter, Jan Moscatello, Augustine L. Darzynkiewicz, Zbigniew Tiwari, Raj K. Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells |
title | Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells |
title_full | Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells |
title_fullStr | Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells |
title_full_unstemmed | Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells |
title_short | Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells |
title_sort | hyperactive erk and persistent mtor signaling characterize vemurafenib resistance in papillary thyroid cancer cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890996/ https://www.ncbi.nlm.nih.gov/pubmed/26735176 http://dx.doi.org/10.18632/oncotarget.6779 |
work_keys_str_mv | AT hanlyelysek hyperactiveerkandpersistentmtorsignalingcharacterizevemurafenibresistanceinpapillarythyroidcancercells AT tulinehay hyperactiveerkandpersistentmtorsignalingcharacterizevemurafenibresistanceinpapillarythyroidcancercells AT bednarczykrobertb hyperactiveerkandpersistentmtorsignalingcharacterizevemurafenibresistanceinpapillarythyroidcancercells AT surianorobert hyperactiveerkandpersistentmtorsignalingcharacterizevemurafenibresistanceinpapillarythyroidcancercells AT geliebterjan hyperactiveerkandpersistentmtorsignalingcharacterizevemurafenibresistanceinpapillarythyroidcancercells AT moscatelloaugustinel hyperactiveerkandpersistentmtorsignalingcharacterizevemurafenibresistanceinpapillarythyroidcancercells AT darzynkiewiczzbigniew hyperactiveerkandpersistentmtorsignalingcharacterizevemurafenibresistanceinpapillarythyroidcancercells AT tiwarirajk hyperactiveerkandpersistentmtorsignalingcharacterizevemurafenibresistanceinpapillarythyroidcancercells |