Cargando…
Identifying anti-cancer drug response related genes using an integrative analysis of transcriptomic and genomic variations with cell line-based drug perturbations
BACKGROUND: Clinical responses to anti-cancer therapies often only benefit a defined subset of patients. Predicting the best treatment strategy hinges on our ability to effectively translate genomic data into actionable information on drug responses. RESULTS: To achieve this goal, we compiled a comp...
Autores principales: | Sun, Yi, Zhang, Wei, Chen, Yunqin, Ma, Qin, Wei, Jia, Liu, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891048/ https://www.ncbi.nlm.nih.gov/pubmed/26824188 http://dx.doi.org/10.18632/oncotarget.7012 |
Ejemplares similares
-
Genomic and transcriptome profiling identified both human and HBV genetic variations and their interactions in Chinese hepatocellular carcinoma
por: Dong, Hua, et al.
Publicado: (2015) -
Integrative Transcriptome Analyses Empower the Anti-COVID-19 Drug Arsenal
por: El-Hachem, Nehme, et al.
Publicado: (2020) -
Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures
por: Sawada, Ryusuke, et al.
Publicado: (2018) -
Drug perturbation gene set enrichment analysis (dpGSEA): a new transcriptomic drug screening approach
por: Fang, Mike, et al.
Publicado: (2021) -
Causal reasoning over knowledge graphs leveraging drug-perturbed and disease-specific transcriptomic signatures for drug discovery
por: Domingo-Fernández, Daniel, et al.
Publicado: (2022)