Cargando…
Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study
The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891697/ https://www.ncbi.nlm.nih.gov/pubmed/27293554 http://dx.doi.org/10.1017/jns.2016.8 |
_version_ | 1782435315466633216 |
---|---|
author | Price, R. Jordan Lillycrop, Karen A. Burdge, Graham C. |
author_facet | Price, R. Jordan Lillycrop, Karen A. Burdge, Graham C. |
author_sort | Price, R. Jordan |
collection | PubMed |
description | The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC. |
format | Online Article Text |
id | pubmed-4891697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-48916972016-06-10 Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study Price, R. Jordan Lillycrop, Karen A. Burdge, Graham C. J Nutr Sci Research Article The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC. Cambridge University Press 2016-04-26 /pmc/articles/PMC4891697/ /pubmed/27293554 http://dx.doi.org/10.1017/jns.2016.8 Text en © The Author(s) 2016 http://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Price, R. Jordan Lillycrop, Karen A. Burdge, Graham C. Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study |
title | Folic acid induces cell type-specific changes in the transcriptome of breast
cancer cell lines: a proof-of-concept study |
title_full | Folic acid induces cell type-specific changes in the transcriptome of breast
cancer cell lines: a proof-of-concept study |
title_fullStr | Folic acid induces cell type-specific changes in the transcriptome of breast
cancer cell lines: a proof-of-concept study |
title_full_unstemmed | Folic acid induces cell type-specific changes in the transcriptome of breast
cancer cell lines: a proof-of-concept study |
title_short | Folic acid induces cell type-specific changes in the transcriptome of breast
cancer cell lines: a proof-of-concept study |
title_sort | folic acid induces cell type-specific changes in the transcriptome of breast
cancer cell lines: a proof-of-concept study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891697/ https://www.ncbi.nlm.nih.gov/pubmed/27293554 http://dx.doi.org/10.1017/jns.2016.8 |
work_keys_str_mv | AT pricerjordan folicacidinducescelltypespecificchangesinthetranscriptomeofbreastcancercelllinesaproofofconceptstudy AT lillycropkarena folicacidinducescelltypespecificchangesinthetranscriptomeofbreastcancercelllinesaproofofconceptstudy AT burdgegrahamc folicacidinducescelltypespecificchangesinthetranscriptomeofbreastcancercelllinesaproofofconceptstudy |