Cargando…
Fast methods for training Gaussian processes on large datasets
Gaussian process regression (GPR) is a non-parametric Bayesian technique for interpolating or fitting data. The main barrier to further uptake of this powerful tool rests in the computational costs associated with the matrices which arise when dealing with large datasets. Here, we derive some simple...
Autores principales: | Moore, C. J., Chua, A. J. K., Berry, C. P. L., Gair, J. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892455/ https://www.ncbi.nlm.nih.gov/pubmed/27293793 http://dx.doi.org/10.1098/rsos.160125 |
Ejemplares similares
-
Gaussian processes
por: Hitsuda, Masuyuki, et al.
Publicado: (1993) -
Asymptotic methods in the theory of Gaussian processes and fields
por: Piterbarg, Vladimir I
Publicado: (1995) -
Lectures on gaussian processes
por: Lifshits, Mikhail
Publicado: (2012) -
Gaussian random processes
por: Ibragimov, I A, et al.
Publicado: (1978) -
Fast sampling of Gaussian Markov random fields with applications
por: Rue, H
Publicado: (2000)