Cargando…
Random Forests for Global and Regional Crop Yield Predictions
Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and r...
Autores principales: | Jeong, Jig Han, Resop, Jonathan P., Mueller, Nathaniel D., Fleisher, David H., Yun, Kyungdahm, Butler, Ethan E., Timlin, Dennis J., Shim, Kyo-Moon, Gerber, James S., Reddy, Vangimalla R., Kim, Soo-Hyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892571/ https://www.ncbi.nlm.nih.gov/pubmed/27257967 http://dx.doi.org/10.1371/journal.pone.0156571 |
Ejemplares similares
-
Phosphorus Nutrition Affects Temperature Response of Soybean Growth and Canopy Photosynthesis
por: Singh, Shardendu K., et al.
Publicado: (2018) -
Coupled Gas-Exchange Model for C(4) Leaves Comparing Stomatal Conductance Models
por: Yun, Kyungdahm, et al.
Publicado: (2020) -
Improving the cotton simulation model, GOSSYM, for soil, photosynthesis, and transpiration processes
por: Beegum, Sahila, et al.
Publicado: (2023) -
Drought-Induced Responses in Maize under Different Vapor Pressure Deficit Conditions
por: Devi, Mura Jyostna, et al.
Publicado: (2022) -
Yield Trends Are Insufficient to Double Global Crop Production by 2050
por: Ray, Deepak K., et al.
Publicado: (2013)