Cargando…
Investigation of Bias in Continuous Medical Image Label Fusion
Image labeling is essential for analyzing morphometric features in medical imaging data. Labels can be obtained by either human interaction or automated segmentation algorithms, both of which suffer from errors. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm for both disc...
Autores principales: | Xing, Fangxu, Prince, Jerry L., Landman, Bennett A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892597/ https://www.ncbi.nlm.nih.gov/pubmed/27258158 http://dx.doi.org/10.1371/journal.pone.0155862 |
Ejemplares similares
-
Attentive Continuous Generative Self-training for Unsupervised Domain Adaptive Medical Image Translation
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
A reproducibility evaluation of the effects of MRI defacing on brain segmentation
por: Gao, Chenyu, et al.
Publicado: (2023) -
Quantitative CT Imaging of Ventral Hernias: Preliminary Validation of an Anatomical Labeling Protocol
por: Xu, Zhoubing, et al.
Publicado: (2015) -
BIAS: Transparent reporting of biomedical image analysis challenges
por: Maier-Hein, Lena, et al.
Publicado: (2020) -
Medical Imaging: Signals and Systems
por: Prince, Jerry L, et al.
Publicado: (2006)