Cargando…
Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis
Despite nature’s prevalent use of metals as prosthetics to adapt or enhance the behaviour of proteins, our ability to programme such architectural organization remains underdeveloped. Multi-metal clusters buried in proteins underpin the most remarkable chemical transformations in nature, but we are...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893187/ https://www.ncbi.nlm.nih.gov/pubmed/27279776 http://dx.doi.org/10.1098/rspa.2016.0078 |
_version_ | 1782435508902690816 |
---|---|
author | Fehl, Charlie Davis, Benjamin G. |
author_facet | Fehl, Charlie Davis, Benjamin G. |
author_sort | Fehl, Charlie |
collection | PubMed |
description | Despite nature’s prevalent use of metals as prosthetics to adapt or enhance the behaviour of proteins, our ability to programme such architectural organization remains underdeveloped. Multi-metal clusters buried in proteins underpin the most remarkable chemical transformations in nature, but we are not yet in a position to fully mimic or exploit such systems. With the advent of copious, relevant structural information, judicious mechanistic studies and the use of accessible computational methods in protein design coupled with new synthetic methods for building biomacromolecules, we can envisage a ‘new dawn’ that will allow us to build de novo metalloenzymes that move beyond mono-metal centres. In particular, we highlight the need for systems that approach the multi-centred clusters that have evolved to couple electron shuttling with catalysis. Such hybrids may be viewed as exciting mid-points between homogeneous and heterogeneous catalysts which also exploit the primary benefits of biocatalysis. |
format | Online Article Text |
id | pubmed-4893187 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-48931872016-06-08 Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis Fehl, Charlie Davis, Benjamin G. Proc Math Phys Eng Sci Special Feature Despite nature’s prevalent use of metals as prosthetics to adapt or enhance the behaviour of proteins, our ability to programme such architectural organization remains underdeveloped. Multi-metal clusters buried in proteins underpin the most remarkable chemical transformations in nature, but we are not yet in a position to fully mimic or exploit such systems. With the advent of copious, relevant structural information, judicious mechanistic studies and the use of accessible computational methods in protein design coupled with new synthetic methods for building biomacromolecules, we can envisage a ‘new dawn’ that will allow us to build de novo metalloenzymes that move beyond mono-metal centres. In particular, we highlight the need for systems that approach the multi-centred clusters that have evolved to couple electron shuttling with catalysis. Such hybrids may be viewed as exciting mid-points between homogeneous and heterogeneous catalysts which also exploit the primary benefits of biocatalysis. The Royal Society Publishing 2016-05 /pmc/articles/PMC4893187/ /pubmed/27279776 http://dx.doi.org/10.1098/rspa.2016.0078 Text en © 2016 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Special Feature Fehl, Charlie Davis, Benjamin G. Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis |
title | Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis |
title_full | Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis |
title_fullStr | Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis |
title_full_unstemmed | Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis |
title_short | Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis |
title_sort | proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis |
topic | Special Feature |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893187/ https://www.ncbi.nlm.nih.gov/pubmed/27279776 http://dx.doi.org/10.1098/rspa.2016.0078 |
work_keys_str_mv | AT fehlcharlie proteinsastemplatesforcomplexsyntheticmetalloclusterstowardsbiologicallyprogrammedheterogeneouscatalysis AT davisbenjaming proteinsastemplatesforcomplexsyntheticmetalloclusterstowardsbiologicallyprogrammedheterogeneouscatalysis |