Cargando…

Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation

BACKGROUND: Whole body ischemia-reperfusion injury (IRI) after cardiopulmonary resuscitation (CPR) induces a generalized inflammatory response which contributes to the development of post-cardiac arrest syndrome (PCAS). Recently, pattern recognition receptors (PRRs), such as toll-like receptors (TLR...

Descripción completa

Detalles Bibliográficos
Autores principales: Asmussen, Alexander, Fink, Katrin, Busch, Hans-Jörg, Helbing, Thomas, Bourgeois, Natascha, Bode, Christoph, Grundmann, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893227/
https://www.ncbi.nlm.nih.gov/pubmed/27260481
http://dx.doi.org/10.1186/s13054-016-1340-3
_version_ 1782435514957168640
author Asmussen, Alexander
Fink, Katrin
Busch, Hans-Jörg
Helbing, Thomas
Bourgeois, Natascha
Bode, Christoph
Grundmann, Sebastian
author_facet Asmussen, Alexander
Fink, Katrin
Busch, Hans-Jörg
Helbing, Thomas
Bourgeois, Natascha
Bode, Christoph
Grundmann, Sebastian
author_sort Asmussen, Alexander
collection PubMed
description BACKGROUND: Whole body ischemia-reperfusion injury (IRI) after cardiopulmonary resuscitation (CPR) induces a generalized inflammatory response which contributes to the development of post-cardiac arrest syndrome (PCAS). Recently, pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and inflammasomes, have been shown to mediate the inflammatory response in IRI. In this study we investigated monocyte PRR signaling and function in PCAS. METHODS: Blood samples were drawn in the first 12 hours, and at 24 and 48 hours following return of spontaneous circulation in 51 survivors after cardiac arrest. Monocyte mRNA levels of TLR2, TLR4, interleukin-1 receptor-associated kinase (IRAK)3, IRAK4, NLR family pyrin domain containing (NLRP)1, NLRP3, AIM2, PYCARD, CASP1, and IL1B were determined by real-time quantitative PCR. Ex vivo cytokine production in response to stimulation with TLR ligands Pam(3)CSK(4) and lipopolysaccharide (LPS) was assessed in both whole blood and monocyte culture assays. Ex vivo cytokine production of peripheral blood mononuclear cells (PBMCs) from a healthy volunteer in response to stimulation with patients’ sera with or without LPS was assessed. The results were compared to 19 hemodynamically stable patients with coronary artery disease. RESULTS: Monocyte TLR2, TLR4, IRAK3, IRAK4, NLRP3, PYCARD and IL1B were initially upregulated in patients following cardiac arrest. The NLRP1 and AIM2 inflammasomes were downregulated in resuscitated patients. There was a significant positive correlation between TLR2, TLR4, IRAK3 and IRAK4 expression and the degree of ischemia as assessed by serum lactate levels and the time until return of spontaneous circulation. Nonsurvivors at 30 days had significantly lower mRNA levels of TLR2, IRAK3, IRAK4, NLRP3 and CASP1 in the late phase following cardiac arrest. We observed reduced proinflammatory cytokine release in response to both TLR2 and TLR4 activation in whole blood and monocyte culture assays in patients after CPR. Sera from resuscitated patients attenuated the inflammatory response in cultured PBMCs after co-stimulation with LPS. CONCLUSIONS: Successful resuscitation from cardiac arrest results in changes in monocyte pattern recognition receptor signaling pathways, which may contribute to the post-cardiac arrest syndrome. TRIAL REGISTRATION: The trial was registered in the German Clinical Trials Register (DRKS00009684) on 27/11/2015. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-016-1340-3) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4893227
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48932272016-06-05 Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation Asmussen, Alexander Fink, Katrin Busch, Hans-Jörg Helbing, Thomas Bourgeois, Natascha Bode, Christoph Grundmann, Sebastian Crit Care Research BACKGROUND: Whole body ischemia-reperfusion injury (IRI) after cardiopulmonary resuscitation (CPR) induces a generalized inflammatory response which contributes to the development of post-cardiac arrest syndrome (PCAS). Recently, pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and inflammasomes, have been shown to mediate the inflammatory response in IRI. In this study we investigated monocyte PRR signaling and function in PCAS. METHODS: Blood samples were drawn in the first 12 hours, and at 24 and 48 hours following return of spontaneous circulation in 51 survivors after cardiac arrest. Monocyte mRNA levels of TLR2, TLR4, interleukin-1 receptor-associated kinase (IRAK)3, IRAK4, NLR family pyrin domain containing (NLRP)1, NLRP3, AIM2, PYCARD, CASP1, and IL1B were determined by real-time quantitative PCR. Ex vivo cytokine production in response to stimulation with TLR ligands Pam(3)CSK(4) and lipopolysaccharide (LPS) was assessed in both whole blood and monocyte culture assays. Ex vivo cytokine production of peripheral blood mononuclear cells (PBMCs) from a healthy volunteer in response to stimulation with patients’ sera with or without LPS was assessed. The results were compared to 19 hemodynamically stable patients with coronary artery disease. RESULTS: Monocyte TLR2, TLR4, IRAK3, IRAK4, NLRP3, PYCARD and IL1B were initially upregulated in patients following cardiac arrest. The NLRP1 and AIM2 inflammasomes were downregulated in resuscitated patients. There was a significant positive correlation between TLR2, TLR4, IRAK3 and IRAK4 expression and the degree of ischemia as assessed by serum lactate levels and the time until return of spontaneous circulation. Nonsurvivors at 30 days had significantly lower mRNA levels of TLR2, IRAK3, IRAK4, NLRP3 and CASP1 in the late phase following cardiac arrest. We observed reduced proinflammatory cytokine release in response to both TLR2 and TLR4 activation in whole blood and monocyte culture assays in patients after CPR. Sera from resuscitated patients attenuated the inflammatory response in cultured PBMCs after co-stimulation with LPS. CONCLUSIONS: Successful resuscitation from cardiac arrest results in changes in monocyte pattern recognition receptor signaling pathways, which may contribute to the post-cardiac arrest syndrome. TRIAL REGISTRATION: The trial was registered in the German Clinical Trials Register (DRKS00009684) on 27/11/2015. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-016-1340-3) contains supplementary material, which is available to authorized users. BioMed Central 2016-06-04 2016 /pmc/articles/PMC4893227/ /pubmed/27260481 http://dx.doi.org/10.1186/s13054-016-1340-3 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Asmussen, Alexander
Fink, Katrin
Busch, Hans-Jörg
Helbing, Thomas
Bourgeois, Natascha
Bode, Christoph
Grundmann, Sebastian
Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
title Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
title_full Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
title_fullStr Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
title_full_unstemmed Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
title_short Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
title_sort inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893227/
https://www.ncbi.nlm.nih.gov/pubmed/27260481
http://dx.doi.org/10.1186/s13054-016-1340-3
work_keys_str_mv AT asmussenalexander inflammasomeandtolllikereceptorsignalinginhumanmonocytesaftersuccessfulcardiopulmonaryresuscitation
AT finkkatrin inflammasomeandtolllikereceptorsignalinginhumanmonocytesaftersuccessfulcardiopulmonaryresuscitation
AT buschhansjorg inflammasomeandtolllikereceptorsignalinginhumanmonocytesaftersuccessfulcardiopulmonaryresuscitation
AT helbingthomas inflammasomeandtolllikereceptorsignalinginhumanmonocytesaftersuccessfulcardiopulmonaryresuscitation
AT bourgeoisnatascha inflammasomeandtolllikereceptorsignalinginhumanmonocytesaftersuccessfulcardiopulmonaryresuscitation
AT bodechristoph inflammasomeandtolllikereceptorsignalinginhumanmonocytesaftersuccessfulcardiopulmonaryresuscitation
AT grundmannsebastian inflammasomeandtolllikereceptorsignalinginhumanmonocytesaftersuccessfulcardiopulmonaryresuscitation