Cargando…

MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses

Predicting dynamics of host-microbial ecosystems is crucial for the rational design of bacteriotherapies. We present MDSINE, a suite of algorithms for inferring dynamical systems models from microbiome time-series data and predicting temporal behaviors. Using simulated data, we demonstrate that MDSI...

Descripción completa

Detalles Bibliográficos
Autores principales: Bucci, Vanni, Tzen, Belinda, Li, Ning, Simmons, Matt, Tanoue, Takeshi, Bogart, Elijah, Deng, Luxue, Yeliseyev, Vladimir, Delaney, Mary L., Liu, Qing, Olle, Bernat, Stein, Richard R., Honda, Kenya, Bry, Lynn, Gerber, Georg K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893271/
https://www.ncbi.nlm.nih.gov/pubmed/27259475
http://dx.doi.org/10.1186/s13059-016-0980-6
_version_ 1782435524927029248
author Bucci, Vanni
Tzen, Belinda
Li, Ning
Simmons, Matt
Tanoue, Takeshi
Bogart, Elijah
Deng, Luxue
Yeliseyev, Vladimir
Delaney, Mary L.
Liu, Qing
Olle, Bernat
Stein, Richard R.
Honda, Kenya
Bry, Lynn
Gerber, Georg K.
author_facet Bucci, Vanni
Tzen, Belinda
Li, Ning
Simmons, Matt
Tanoue, Takeshi
Bogart, Elijah
Deng, Luxue
Yeliseyev, Vladimir
Delaney, Mary L.
Liu, Qing
Olle, Bernat
Stein, Richard R.
Honda, Kenya
Bry, Lynn
Gerber, Georg K.
author_sort Bucci, Vanni
collection PubMed
description Predicting dynamics of host-microbial ecosystems is crucial for the rational design of bacteriotherapies. We present MDSINE, a suite of algorithms for inferring dynamical systems models from microbiome time-series data and predicting temporal behaviors. Using simulated data, we demonstrate that MDSINE significantly outperforms the existing inference method. We then show MDSINE’s utility on two new gnotobiotic mice datasets, investigating infection with Clostridium difficile and an immune-modulatory probiotic. Using these datasets, we demonstrate new capabilities, including accurate forecasting of microbial dynamics, prediction of stable sub-communities that inhibit pathogen growth, and identification of bacteria most crucial to community integrity in response to perturbations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0980-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4893271
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48932712016-06-05 MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses Bucci, Vanni Tzen, Belinda Li, Ning Simmons, Matt Tanoue, Takeshi Bogart, Elijah Deng, Luxue Yeliseyev, Vladimir Delaney, Mary L. Liu, Qing Olle, Bernat Stein, Richard R. Honda, Kenya Bry, Lynn Gerber, Georg K. Genome Biol Method Predicting dynamics of host-microbial ecosystems is crucial for the rational design of bacteriotherapies. We present MDSINE, a suite of algorithms for inferring dynamical systems models from microbiome time-series data and predicting temporal behaviors. Using simulated data, we demonstrate that MDSINE significantly outperforms the existing inference method. We then show MDSINE’s utility on two new gnotobiotic mice datasets, investigating infection with Clostridium difficile and an immune-modulatory probiotic. Using these datasets, we demonstrate new capabilities, including accurate forecasting of microbial dynamics, prediction of stable sub-communities that inhibit pathogen growth, and identification of bacteria most crucial to community integrity in response to perturbations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0980-6) contains supplementary material, which is available to authorized users. BioMed Central 2016-06-03 /pmc/articles/PMC4893271/ /pubmed/27259475 http://dx.doi.org/10.1186/s13059-016-0980-6 Text en © Bucci et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Bucci, Vanni
Tzen, Belinda
Li, Ning
Simmons, Matt
Tanoue, Takeshi
Bogart, Elijah
Deng, Luxue
Yeliseyev, Vladimir
Delaney, Mary L.
Liu, Qing
Olle, Bernat
Stein, Richard R.
Honda, Kenya
Bry, Lynn
Gerber, Georg K.
MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
title MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
title_full MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
title_fullStr MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
title_full_unstemmed MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
title_short MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
title_sort mdsine: microbial dynamical systems inference engine for microbiome time-series analyses
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893271/
https://www.ncbi.nlm.nih.gov/pubmed/27259475
http://dx.doi.org/10.1186/s13059-016-0980-6
work_keys_str_mv AT buccivanni mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT tzenbelinda mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT lining mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT simmonsmatt mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT tanouetakeshi mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT bogartelijah mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT dengluxue mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT yeliseyevvladimir mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT delaneymaryl mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT liuqing mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT ollebernat mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT steinrichardr mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT hondakenya mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT brylynn mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses
AT gerbergeorgk mdsinemicrobialdynamicalsystemsinferenceengineformicrobiometimeseriesanalyses