Cargando…
MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
Predicting dynamics of host-microbial ecosystems is crucial for the rational design of bacteriotherapies. We present MDSINE, a suite of algorithms for inferring dynamical systems models from microbiome time-series data and predicting temporal behaviors. Using simulated data, we demonstrate that MDSI...
Autores principales: | Bucci, Vanni, Tzen, Belinda, Li, Ning, Simmons, Matt, Tanoue, Takeshi, Bogart, Elijah, Deng, Luxue, Yeliseyev, Vladimir, Delaney, Mary L., Liu, Qing, Olle, Bernat, Stein, Richard R., Honda, Kenya, Bry, Lynn, Gerber, Georg K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893271/ https://www.ncbi.nlm.nih.gov/pubmed/27259475 http://dx.doi.org/10.1186/s13059-016-0980-6 |
Ejemplares similares
-
MITRE: inferring features from microbiota time-series data linked to host status
por: Bogart, Elijah, et al.
Publicado: (2019) -
Computer-guided design of optimal microbial consortia for immune system modulation
por: Stein, Richard R, et al.
Publicado: (2018) -
Protocol for using negative pressure isolator systems to study BSL-2 organisms in gnotobiotic murine models
por: Pavao, Aidan, et al.
Publicado: (2022) -
Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model
por: Neto, Catherine C., et al.
Publicado: (2021) -
SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models
por: Zafar, Hamim, et al.
Publicado: (2017)