Cargando…
Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3)H-Phorbol 12,13-Dibutyrate Binding in Rats
Aims. Hyperalgesia following tissue injury is induced by plasticity in neurotransmission. Few investigators have considered the ascending input which activates the superficial of spinal cord. The aim was to examine neurotransmission and nociceptive processing in the spinal cord after mustard-oil (MO...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893397/ https://www.ncbi.nlm.nih.gov/pubmed/27335874 http://dx.doi.org/10.1155/2013/340167 |
_version_ | 1782435547091828736 |
---|---|
author | Seiko, Yasuda Kozo, Ishikawa Yoshihiro, Matsumoto Toru, Ariyoshi Hironori, Sasaki Yuika, Ida Yasutake, Iwanaga Hae-Kyu, Kim Osamu, Nakanishi Toshizo, Ishikawa |
author_facet | Seiko, Yasuda Kozo, Ishikawa Yoshihiro, Matsumoto Toru, Ariyoshi Hironori, Sasaki Yuika, Ida Yasutake, Iwanaga Hae-Kyu, Kim Osamu, Nakanishi Toshizo, Ishikawa |
author_sort | Seiko, Yasuda |
collection | PubMed |
description | Aims. Hyperalgesia following tissue injury is induced by plasticity in neurotransmission. Few investigators have considered the ascending input which activates the superficial of spinal cord. The aim was to examine neurotransmission and nociceptive processing in the spinal cord after mustard-oil (MO) injection. Both in vitro and in vivo autoradiographs were employed for neuronal activity and transmission in discrete spinal cord regions using the (14)C-2-deoxyglucose method and (3)H-phorbol 12,13-dibutyrate ((3)H-PDBu) binding sites. Methods. To quantify the hyperalgesia evoked by MO, the flinching was counted for 60 min after MO (20%, 50 μL) injection in Wistar rats. Simultaneous determination of (14)C-2-deoxyglucose and (3)H-PDBu binding was used for a direct observation of neuronal/metabolic changes and intracellular signaling in the spinal cord. Results. MO injection evoked an increase in flinching for 60 min. LSCGU significantly increased in the Rexed I-II with (3)H-PDBu binding in the ipsilateral side of spinal cord. Discussion. We clearly demonstrated that the hyperalgesia is primarily relevant to increased neuronal activation with PKC activation in the Rexed I-II of the spinal cord. In addition, functional changes such as “neuronal plasticity” may result in increased neuronal excitability and a central sensitization. |
format | Online Article Text |
id | pubmed-4893397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-48933972016-06-22 Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3)H-Phorbol 12,13-Dibutyrate Binding in Rats Seiko, Yasuda Kozo, Ishikawa Yoshihiro, Matsumoto Toru, Ariyoshi Hironori, Sasaki Yuika, Ida Yasutake, Iwanaga Hae-Kyu, Kim Osamu, Nakanishi Toshizo, Ishikawa ISRN Pain Research Article Aims. Hyperalgesia following tissue injury is induced by plasticity in neurotransmission. Few investigators have considered the ascending input which activates the superficial of spinal cord. The aim was to examine neurotransmission and nociceptive processing in the spinal cord after mustard-oil (MO) injection. Both in vitro and in vivo autoradiographs were employed for neuronal activity and transmission in discrete spinal cord regions using the (14)C-2-deoxyglucose method and (3)H-phorbol 12,13-dibutyrate ((3)H-PDBu) binding sites. Methods. To quantify the hyperalgesia evoked by MO, the flinching was counted for 60 min after MO (20%, 50 μL) injection in Wistar rats. Simultaneous determination of (14)C-2-deoxyglucose and (3)H-PDBu binding was used for a direct observation of neuronal/metabolic changes and intracellular signaling in the spinal cord. Results. MO injection evoked an increase in flinching for 60 min. LSCGU significantly increased in the Rexed I-II with (3)H-PDBu binding in the ipsilateral side of spinal cord. Discussion. We clearly demonstrated that the hyperalgesia is primarily relevant to increased neuronal activation with PKC activation in the Rexed I-II of the spinal cord. In addition, functional changes such as “neuronal plasticity” may result in increased neuronal excitability and a central sensitization. Hindawi Publishing Corporation 2013-12-26 /pmc/articles/PMC4893397/ /pubmed/27335874 http://dx.doi.org/10.1155/2013/340167 Text en Copyright © 2013 Yasuda Seiko et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Seiko, Yasuda Kozo, Ishikawa Yoshihiro, Matsumoto Toru, Ariyoshi Hironori, Sasaki Yuika, Ida Yasutake, Iwanaga Hae-Kyu, Kim Osamu, Nakanishi Toshizo, Ishikawa Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3)H-Phorbol 12,13-Dibutyrate Binding in Rats |
title | Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3)H-Phorbol 12,13-Dibutyrate Binding in Rats |
title_full | Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3)H-Phorbol 12,13-Dibutyrate Binding in Rats |
title_fullStr | Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3)H-Phorbol 12,13-Dibutyrate Binding in Rats |
title_full_unstemmed | Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3)H-Phorbol 12,13-Dibutyrate Binding in Rats |
title_short | Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3)H-Phorbol 12,13-Dibutyrate Binding in Rats |
title_sort | distribution of spinal sensitization evoked by inflammatory pain using local spinal cord glucose utilization combined with (3)h-phorbol 12,13-dibutyrate binding in rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893397/ https://www.ncbi.nlm.nih.gov/pubmed/27335874 http://dx.doi.org/10.1155/2013/340167 |
work_keys_str_mv | AT seikoyasuda distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT kozoishikawa distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT yoshihiromatsumoto distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT toruariyoshi distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT hironorisasaki distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT yuikaida distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT yasutakeiwanaga distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT haekyukim distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT osamunakanishi distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats AT toshizoishikawa distributionofspinalsensitizationevokedbyinflammatorypainusinglocalspinalcordglucoseutilizationcombinedwith3hphorbol1213dibutyratebindinginrats |