Cargando…
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, activ...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893616/ https://www.ncbi.nlm.nih.gov/pubmed/27265380 http://dx.doi.org/10.1038/srep27366 |
Sumario: | Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc. |
---|