Cargando…
A C-terminally truncated mouse Best3 splice variant targets and alters the ion balance in lysosome-endosome hybrids and the endoplasmic reticulum
The Bestrophin family has been characterized as Cl(−) channels in mammals and Na(+) channels in bacteria, but their exact physiological roles remian unknown. In this study, a natural C-terminally truncated variant of mouse Bestrophin 3 (Best3V2) expression in myoblasts and muscles is demonstrated. U...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893618/ https://www.ncbi.nlm.nih.gov/pubmed/27265833 http://dx.doi.org/10.1038/srep27332 |
Sumario: | The Bestrophin family has been characterized as Cl(−) channels in mammals and Na(+) channels in bacteria, but their exact physiological roles remian unknown. In this study, a natural C-terminally truncated variant of mouse Bestrophin 3 (Best3V2) expression in myoblasts and muscles is demonstrated. Unlike full-length Best3, Best3V2 targets the two important intracellular Ca stores: the lysosome and the ER. Heterologous overexpression leads to lysosome swelling and renders it less acidic. Best3V2 overexpression also results in compromised Ca(2+) release from the ER. Knocking down endogenous Best3 expression in myoblasts makes these cells more excitable in response to Ca(2+) mobilizing reagents, such as caffeine. We propose that Best3V2 in myoblasts may work as a tuner to control Ca(2+) release from intracellular Ca(2+) stores. |
---|