Cargando…
MOF maintains transcriptional programs regulating cellular stress response
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differe...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893634/ https://www.ncbi.nlm.nih.gov/pubmed/26387537 http://dx.doi.org/10.1038/onc.2015.335 |
_version_ | 1782435592729001984 |
---|---|
author | Sheikh, B N Bechtel-Walz, W Lucci, J Karpiuk, O Hild, I Hartleben, B Vornweg, J Helmstädter, M Sahyoun, A H Bhardwaj, V Stehle, T Diehl, S Kretz, O Voss, A K Thomas, T Manke, T Huber, T B Akhtar, A |
author_facet | Sheikh, B N Bechtel-Walz, W Lucci, J Karpiuk, O Hild, I Hartleben, B Vornweg, J Helmstädter, M Sahyoun, A H Bhardwaj, V Stehle, T Diehl, S Kretz, O Voss, A K Thomas, T Manke, T Huber, T B Akhtar, A |
author_sort | Sheikh, B N |
collection | PubMed |
description | MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. |
format | Online Article Text |
id | pubmed-4893634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48936342016-06-16 MOF maintains transcriptional programs regulating cellular stress response Sheikh, B N Bechtel-Walz, W Lucci, J Karpiuk, O Hild, I Hartleben, B Vornweg, J Helmstädter, M Sahyoun, A H Bhardwaj, V Stehle, T Diehl, S Kretz, O Voss, A K Thomas, T Manke, T Huber, T B Akhtar, A Oncogene Original Article MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. Nature Publishing Group 2016-05 2015-09-21 /pmc/articles/PMC4893634/ /pubmed/26387537 http://dx.doi.org/10.1038/onc.2015.335 Text en Copyright © 2016 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Original Article Sheikh, B N Bechtel-Walz, W Lucci, J Karpiuk, O Hild, I Hartleben, B Vornweg, J Helmstädter, M Sahyoun, A H Bhardwaj, V Stehle, T Diehl, S Kretz, O Voss, A K Thomas, T Manke, T Huber, T B Akhtar, A MOF maintains transcriptional programs regulating cellular stress response |
title | MOF maintains transcriptional programs regulating cellular stress response |
title_full | MOF maintains transcriptional programs regulating cellular stress response |
title_fullStr | MOF maintains transcriptional programs regulating cellular stress response |
title_full_unstemmed | MOF maintains transcriptional programs regulating cellular stress response |
title_short | MOF maintains transcriptional programs regulating cellular stress response |
title_sort | mof maintains transcriptional programs regulating cellular stress response |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893634/ https://www.ncbi.nlm.nih.gov/pubmed/26387537 http://dx.doi.org/10.1038/onc.2015.335 |
work_keys_str_mv | AT sheikhbn mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT bechtelwalzw mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT luccij mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT karpiuko mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT hildi mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT hartlebenb mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT vornwegj mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT helmstadterm mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT sahyounah mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT bhardwajv mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT stehlet mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT diehls mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT kretzo mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT vossak mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT thomast mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT manket mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT hubertb mofmaintainstranscriptionalprogramsregulatingcellularstressresponse AT akhtara mofmaintainstranscriptionalprogramsregulatingcellularstressresponse |