Cargando…
Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images
Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensi...
Autores principales: | Sparks, Rachel, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893667/ https://www.ncbi.nlm.nih.gov/pubmed/27264985 http://dx.doi.org/10.1038/srep27306 |
Ejemplares similares
-
Content-based image retrieval of digitized histopathology in boosted spectrally embedded spaces
por: Sridhar, Akshay, et al.
Publicado: (2015) -
Content-based histopathology image retrieval using CometCloud
por: Qi, Xin, et al.
Publicado: (2014) -
SSL and TLS
por: Oppliger, Rolf
Publicado: (2016) -
Optimized SAR imaging algorithm with SSL constraints for the Azimuth direction
por: Wang, Zhenli, et al.
Publicado: (2023) -
A semi-supervised learning approach with consistency regularization for tumor histopathological images analysis
por: Jiang, Yanyun, et al.
Publicado: (2023)