Cargando…

Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool

BACKGROUND: Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides, pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates. A non-targeted global metabolome approach was utilized for exploring human CRC, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Dustin G., Rao, Sangeeta, Weir, Tiffany L., O’Malia, Joanne, Bazan, Marlon, Brown, Regina J., Ryan, Elizabeth P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893840/
https://www.ncbi.nlm.nih.gov/pubmed/27275383
http://dx.doi.org/10.1186/s40170-016-0151-y
_version_ 1782435626648338432
author Brown, Dustin G.
Rao, Sangeeta
Weir, Tiffany L.
O’Malia, Joanne
Bazan, Marlon
Brown, Regina J.
Ryan, Elizabeth P.
author_facet Brown, Dustin G.
Rao, Sangeeta
Weir, Tiffany L.
O’Malia, Joanne
Bazan, Marlon
Brown, Regina J.
Ryan, Elizabeth P.
author_sort Brown, Dustin G.
collection PubMed
description BACKGROUND: Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides, pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates. A non-targeted global metabolome approach was utilized for exploring human CRC, adjacent mucosa, and stool. In this pilot study, we identified metabolite profile differences between CRC and adjacent mucosa from patients undergoing colonic resection. Metabolic pathway analyses further revealed relationships between complex networks of metabolites. METHODS: Seventeen CRC patients participated in this pilot study and provided CRC, adjacent mucosa ~10 cm proximal to the tumor, and stool. Metabolomes were analyzed by gas chromatography-mass spectrometry (GC/MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). All of the library standard identifications were confirmed and further analyzed via MetaboLync(TM) for metabolic network interactions. RESULTS: There were a total of 728 distinct metabolites identified from colonic tissue and stool matrices. Nineteen metabolites significantly distinguished CRC from adjacent mucosa in our patient-matched cohort. Glucose-6-phosphate and fructose-6-phosphate demonstrated 0.64-fold and 0.75-fold lower expression in CRC compared to mucosa, respectively, whereas isobar: betaine aldehyde, N-methyldiethanolamine, and adenylosuccinate had 2.68-fold and 1.88-fold higher relative abundance in CRC. Eleven of the 19 metabolites had not previously been reported for CRC relevance. Metabolic pathway analysis revealed significant perturbations of short-chain fatty acid metabolism, fructose, mannose, and galactose metabolism, and glycolytic, gluconeogenic, and pyruvate metabolism. In comparison to the 500 stool metabolites identified from human CRC patients, only 215 of those stool metabolites were also detected in tissue. This CRC and stool metabolome investigation identified novel metabolites that may serve as key small molecules in CRC pathogenesis, confirmed the results from previously reported CRC metabolome studies, and showed networks for metabolic pathway aberrations. In addition, we found differences between the CRC and stool metabolomes. CONCLUSIONS: Stool metabolite profiles were limited for direct associations with CRC and adjacent mucosa, yet metabolic pathways were conserved across both matrices. Larger patient-matched CRC, adjacent non-cancerous colonic mucosa, and stool cohort studies for metabolite profiling are needed to validate these small molecule differences and metabolic pathway aberrations for clinical application to CRC control, treatment, and prevention. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40170-016-0151-y) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4893840
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48938402016-06-07 Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool Brown, Dustin G. Rao, Sangeeta Weir, Tiffany L. O’Malia, Joanne Bazan, Marlon Brown, Regina J. Ryan, Elizabeth P. Cancer Metab Research BACKGROUND: Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides, pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates. A non-targeted global metabolome approach was utilized for exploring human CRC, adjacent mucosa, and stool. In this pilot study, we identified metabolite profile differences between CRC and adjacent mucosa from patients undergoing colonic resection. Metabolic pathway analyses further revealed relationships between complex networks of metabolites. METHODS: Seventeen CRC patients participated in this pilot study and provided CRC, adjacent mucosa ~10 cm proximal to the tumor, and stool. Metabolomes were analyzed by gas chromatography-mass spectrometry (GC/MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). All of the library standard identifications were confirmed and further analyzed via MetaboLync(TM) for metabolic network interactions. RESULTS: There were a total of 728 distinct metabolites identified from colonic tissue and stool matrices. Nineteen metabolites significantly distinguished CRC from adjacent mucosa in our patient-matched cohort. Glucose-6-phosphate and fructose-6-phosphate demonstrated 0.64-fold and 0.75-fold lower expression in CRC compared to mucosa, respectively, whereas isobar: betaine aldehyde, N-methyldiethanolamine, and adenylosuccinate had 2.68-fold and 1.88-fold higher relative abundance in CRC. Eleven of the 19 metabolites had not previously been reported for CRC relevance. Metabolic pathway analysis revealed significant perturbations of short-chain fatty acid metabolism, fructose, mannose, and galactose metabolism, and glycolytic, gluconeogenic, and pyruvate metabolism. In comparison to the 500 stool metabolites identified from human CRC patients, only 215 of those stool metabolites were also detected in tissue. This CRC and stool metabolome investigation identified novel metabolites that may serve as key small molecules in CRC pathogenesis, confirmed the results from previously reported CRC metabolome studies, and showed networks for metabolic pathway aberrations. In addition, we found differences between the CRC and stool metabolomes. CONCLUSIONS: Stool metabolite profiles were limited for direct associations with CRC and adjacent mucosa, yet metabolic pathways were conserved across both matrices. Larger patient-matched CRC, adjacent non-cancerous colonic mucosa, and stool cohort studies for metabolite profiling are needed to validate these small molecule differences and metabolic pathway aberrations for clinical application to CRC control, treatment, and prevention. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40170-016-0151-y) contains supplementary material, which is available to authorized users. BioMed Central 2016-06-06 /pmc/articles/PMC4893840/ /pubmed/27275383 http://dx.doi.org/10.1186/s40170-016-0151-y Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Brown, Dustin G.
Rao, Sangeeta
Weir, Tiffany L.
O’Malia, Joanne
Bazan, Marlon
Brown, Regina J.
Ryan, Elizabeth P.
Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool
title Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool
title_full Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool
title_fullStr Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool
title_full_unstemmed Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool
title_short Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool
title_sort metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893840/
https://www.ncbi.nlm.nih.gov/pubmed/27275383
http://dx.doi.org/10.1186/s40170-016-0151-y
work_keys_str_mv AT browndusting metabolomicsandmetabolicpathwaynetworksfromhumancolorectalcancersadjacentmucosaandstool
AT raosangeeta metabolomicsandmetabolicpathwaynetworksfromhumancolorectalcancersadjacentmucosaandstool
AT weirtiffanyl metabolomicsandmetabolicpathwaynetworksfromhumancolorectalcancersadjacentmucosaandstool
AT omaliajoanne metabolomicsandmetabolicpathwaynetworksfromhumancolorectalcancersadjacentmucosaandstool
AT bazanmarlon metabolomicsandmetabolicpathwaynetworksfromhumancolorectalcancersadjacentmucosaandstool
AT brownreginaj metabolomicsandmetabolicpathwaynetworksfromhumancolorectalcancersadjacentmucosaandstool
AT ryanelizabethp metabolomicsandmetabolicpathwaynetworksfromhumancolorectalcancersadjacentmucosaandstool