Cargando…
Understanding and preventing drug–drug and drug–gene interactions
Concomitant administration of multiple drugs can lead to unanticipated drug interactions and resultant adverse drug events with their associated costs. A more thorough understanding of the different cytochrome P450 isoenzymes and drug transporters has led to new methods to try to predict and prevent...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894065/ https://www.ncbi.nlm.nih.gov/pubmed/24745854 http://dx.doi.org/10.1586/17512433.2014.910111 |
Sumario: | Concomitant administration of multiple drugs can lead to unanticipated drug interactions and resultant adverse drug events with their associated costs. A more thorough understanding of the different cytochrome P450 isoenzymes and drug transporters has led to new methods to try to predict and prevent clinically relevant drug interactions. There is also an increased recognition of the need to identify the impact of pharmacogenetic polymorphisms on drug interactions. More stringent regulatory requirements have evolved for industry to classify cytochrome inhibitors and inducers, test the effect of drug interactions in the presence of polymorphic enzymes, and evaluate multiple potentially interacting drugs simultaneously. In clinical practice, drug alert software programs have been developed. This review discusses drug interaction mechanisms and strategies for screening and minimizing exposure to drug interactions. We also provide future perspectives for reducing the risk of clinically significant drug interactions. |
---|