Cargando…

“Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”

Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and...

Descripción completa

Detalles Bibliográficos
Autores principales: Mannino, Robert G., Myers, David R., Ahn, Byungwook, Wang, Yichen, Margo Rollins, Gole, Hope, Lin, Angela S., Guldberg, Robert E., Giddens, Don P., Timmins, Lucas H., Lam, Wilbur A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894411/
https://www.ncbi.nlm.nih.gov/pubmed/26202603
http://dx.doi.org/10.1038/srep12401
_version_ 1782435671753883648
author Mannino, Robert G.
Myers, David R.
Ahn, Byungwook
Wang, Yichen
Margo Rollins,
Gole, Hope
Lin, Angela S.
Guldberg, Robert E.
Giddens, Don P.
Timmins, Lucas H.
Lam, Wilbur A.
author_facet Mannino, Robert G.
Myers, David R.
Ahn, Byungwook
Wang, Yichen
Margo Rollins,
Gole, Hope
Lin, Angela S.
Guldberg, Robert E.
Giddens, Don P.
Timmins, Lucas H.
Lam, Wilbur A.
author_sort Mannino, Robert G.
collection PubMed
description Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses, and bifurcations, and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models.
format Online
Article
Text
id pubmed-4894411
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48944112016-06-10 “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions” Mannino, Robert G. Myers, David R. Ahn, Byungwook Wang, Yichen Margo Rollins, Gole, Hope Lin, Angela S. Guldberg, Robert E. Giddens, Don P. Timmins, Lucas H. Lam, Wilbur A. Sci Rep Article Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses, and bifurcations, and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models. Nature Publishing Group 2015-07-23 /pmc/articles/PMC4894411/ /pubmed/26202603 http://dx.doi.org/10.1038/srep12401 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Mannino, Robert G.
Myers, David R.
Ahn, Byungwook
Wang, Yichen
Margo Rollins,
Gole, Hope
Lin, Angela S.
Guldberg, Robert E.
Giddens, Don P.
Timmins, Lucas H.
Lam, Wilbur A.
“Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”
title “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”
title_full “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”
title_fullStr “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”
title_full_unstemmed “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”
title_short “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”
title_sort “do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894411/
https://www.ncbi.nlm.nih.gov/pubmed/26202603
http://dx.doi.org/10.1038/srep12401
work_keys_str_mv AT manninorobertg doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT myersdavidr doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT ahnbyungwook doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT wangyichen doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT margorollins doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT golehope doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT linangelas doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT guldbergroberte doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT giddensdonp doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT timminslucash doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions
AT lamwilbura doityourselfinvitrovasculaturethatrecapitulatesinvivogeometriesforinvestigatingendothelialbloodcellinteractions