Cargando…

On-Demand Generation of a Formaldehyde-in-Air Standard

The feasibility of using catalytic conversion of methanol to formaldehyde to produce standard amount of substance fractions of formaldehyde was examined. The conversion efficiencies of several catalysts were measured as a function of temperature, balance gas, catalyst bed length, and methanol amount...

Descripción completa

Detalles Bibliográficos
Autores principales: Chu, P. M., Thorn, W. J., Sams, R. L., Guenther, F. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894576/
https://www.ncbi.nlm.nih.gov/pubmed/27805143
http://dx.doi.org/10.6028/jres.102.037
Descripción
Sumario:The feasibility of using catalytic conversion of methanol to formaldehyde to produce standard amount of substance fractions of formaldehyde was examined. The conversion efficiencies of several catalysts were measured as a function of temperature, balance gas, catalyst bed length, and methanol amount of substance fraction in an effort to identify conditions which yield high and consistent conversion of methanol to formaldehyde. The highest observed conversion rate was (97 ± 4) % using a molybdenum catalyst, where the error is the 2σ uncertainty. The conversion efficiency was found to be consistent over repeated cycles and over a long lifetime test, suggesting that a molybdenum catalyst is a viable candidate for a standard formaldehyde generator, particularly for low formaldehyde amount of substance fractions (< 15 μmol/mol).