Cargando…
A Distribution-Independent Bound on the Level of Confidence in the Result of a Measurement
The Bienaymé-Chebyshev Inequality provides a quantitative bound on the level of confidence of a measurement with known combined standard uncertainty and assumed coverage factor. The result is independent of the detailed nature of the probability distribution that characterizes knowledge of the measu...
Autor principal: | Estler, W. Tyler |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894578/ https://www.ncbi.nlm.nih.gov/pubmed/27805146 http://dx.doi.org/10.6028/jres.102.040 |
Ejemplares similares
-
Multi-Level Opinion Dynamics under Bounded Confidence
por: Kou, Gang, et al.
Publicado: (2012) -
Opinion Dynamics with Higher-Order Bounded Confidence
por: Wang, Chaoqian
Publicado: (2022) -
Opinion formation with time-varying bounded confidence
por: Zhang, YunHong, et al.
Publicado: (2017) -
Opinion Dynamics Model with Bounded Confidence and the Sleeper Effect
por: Wei, Jing, et al.
Publicado: (2022) -
Uncertainty Analysis for Angle Calibrations Using Circle Closure
por: Estler, W. Tyler
Publicado: (1998)