Cargando…

Radiometric Measurement Comparison Using the Ocean Color Temperature Scanner (OCTS) Visible and Near Infrared Integrating Sphere

As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yok...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, B. Carol, Sakuma, F., Butler, J. J., Biggar, S. F., Cooper, J. W., Ishida, J., Suzuki, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894588/
https://www.ncbi.nlm.nih.gov/pubmed/27805113
http://dx.doi.org/10.6028/jres.102.043
Descripción
Sumario:As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yokohama, Japan. Researchers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the University of Arizona Optical Sciences Center (UA), and the National Research Laboratory of Metrology (NRLM) in Tsukuba, Japan used their portable radiometers to measure the spectral radiance of the OCTS visible and near-infrared integrating sphere at four radiance levels. These four levels corresponded to the configuration of the OCTS integrating sphere when the calibration coefficients for five of the eight spectral channels, or bands, of the OCTS instrument were determined. The measurements of the four radiometers differed by −2.7 % to 3.9 % when compared to the NEC calibration of the sphere and the overall agreement was within the combined measurement uncertainties. A comparison of the measurements from the participating radiometers also resulted in agreement within the combined measurement uncertainties. These results are encouraging and demonstrate the utility of comparisons using laboratory calibration integrating sphere sources. Other comparisons will focus on instruments that are scheduled for spacecraft in the NASA study of climate change, the Earth Observing System (EOS).