Cargando…

Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications

The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity...

Descripción completa

Detalles Bibliográficos
Autores principales: Salazar-Marroquín, Elma Laura, Galán-Wong, Luis J., Moreno-Medina, Víctor Ricardo, Reyes-López, Miguel Ángel, Pereyra-Alférez, Benito
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894761/
https://www.ncbi.nlm.nih.gov/pubmed/27340340
http://dx.doi.org/10.1097/MRM.0000000000000076
Descripción
Sumario:The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity against certain types of cancerous cells. Nevertheless, B. thuringiensis also synthesizes compounds with antimicrobial activity, especially bacteriocins. Some B. thuringiensis bacteriocins resemble lantibiotics and other small linear peptides (class IIa) from the lactic acid bacteria bacteriocins classification system. Although many bacteriocins produced by Bt have been reported, there is no proper classification for them. In this work, we have grouped these based on molecular weight and functionality. Bacteriocins are small peptides synthesized by bacteria, presenting inhibitory activity against Gram-positive and Gram-negative bacteria and to a lesser extent against fungi. These molecules represent a good study model in the search for microbial control alternatives. Lactic acid bacteria produces a huge number of these types of molecules with great potential. Nonetheless, members of the Bacillus, cereus group, especially B. thuringiensis, emerge as an attractive alternative for obtaining bacteriocins showing novel activities. This review describes the potential applications of B. thuringiensis bacteriocins in the control of foodborne pathogens, environment and medical area.