Cargando…
Cox process representation and inference for stochastic reaction–diffusion processes
Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction–diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to si...
Autores principales: | Schnoerr, David, Grima, Ramon, Sanguinetti, Guido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894951/ https://www.ncbi.nlm.nih.gov/pubmed/27222432 http://dx.doi.org/10.1038/ncomms11729 |
Ejemplares similares
-
Inference and uncertainty quantification of stochastic gene expression via synthetic models
por: Öcal, Kaan, et al.
Publicado: (2022) -
Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster
por: Dewar, Michael A, et al.
Publicado: (2010) -
Stochastic modelling of reaction–diffusion processes
por: Erban, Radek, et al.
Publicado: (2020) -
Neural field models for latent state inference: Application to large-scale neuronal recordings
por: Rule, Michael E., et al.
Publicado: (2019) -
Statistical inference in stochastic processes
Publicado: (1991)