Cargando…
A conserved leucine occupies the empty substrate site of LeuT in the Na(+)-free return state
Bacterial members of the neurotransmitter:sodium symporter (NSS) family perform Na(+)-dependent amino-acid uptake and extrude H(+) in return. Previous NSS structures represent intermediates of Na(+)/substrate binding or intracellular release, but not the inward-to-outward return transition. Here we...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894957/ https://www.ncbi.nlm.nih.gov/pubmed/27221344 http://dx.doi.org/10.1038/ncomms11673 |
Sumario: | Bacterial members of the neurotransmitter:sodium symporter (NSS) family perform Na(+)-dependent amino-acid uptake and extrude H(+) in return. Previous NSS structures represent intermediates of Na(+)/substrate binding or intracellular release, but not the inward-to-outward return transition. Here we report crystal structures of Aquifex aeolicus LeuT in an outward-oriented, Na(+)- and substrate-free state likely to be H(+)-occluded. We find a remarkable rotation of the conserved Leu25 into the empty substrate-binding pocket and rearrangements of the empty Na(+) sites. Mutational studies of the equivalent Leu99 in the human serotonin transporter show a critical role of this residue on the transport rate. Molecular dynamics simulations show that extracellular Na(+) is blocked unless Leu25 is rotated out of the substrate-binding pocket. We propose that Leu25 facilitates the inward-to-outward transition by compensating a Na(+)- and substrate-free state and acts as the gatekeeper for Na(+) binding that prevents leak in inward-outward return transitions. |
---|