Cargando…

BK channels in microglia are required for morphine-induced hyperalgesia

Although morphine is a gold standard medication, long-term opioid use is associated with serious side effects, such as morphine-induced hyperalgesia (MIH) and anti-nociceptive tolerance. Microglia-to-neuron signalling is critically involved in pain hypersensitivity. However, molecules that control m...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayashi, Yoshinori, Morinaga, Saori, Zhang, Jing, Satoh, Yasushi, Meredith, Andrea L., Nakata, Takahiro, Wu, Zhou, Kohsaka, Shinichi, Inoue, Kazuhide, Nakanishi, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895018/
https://www.ncbi.nlm.nih.gov/pubmed/27241733
http://dx.doi.org/10.1038/ncomms11697
Descripción
Sumario:Although morphine is a gold standard medication, long-term opioid use is associated with serious side effects, such as morphine-induced hyperalgesia (MIH) and anti-nociceptive tolerance. Microglia-to-neuron signalling is critically involved in pain hypersensitivity. However, molecules that control microglial cellular state under chronic morphine treatment remain unknown. Here we show that the microglia-specific subtype of Ca(2+)-activated K(+) (BK) channel is responsible for generation of MIH and anti-nociceptive tolerance. We find that, after chronic morphine administration, an increase in arachidonic acid levels through the μ-opioid receptors leads to the sole activation of microglial BK channels in the spinal cord. Silencing BK channel auxiliary β3 subunit significantly attenuates the generation of MIH and anti-nociceptive tolerance, and increases neurotransmission after chronic morphine administration. Therefore, microglia-specific BK channels contribute to the generation of MIH and anti-nociceptive tolerance.