Cargando…

RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA

Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolf, Christine, Rapp, Alexander, Berndt, Nicole, Staroske, Wolfgang, Schuster, Max, Dobrick-Mattheuer, Manuela, Kretschmer, Stefanie, König, Nadja, Kurth, Thomas, Wieczorek, Dagmar, Kast, Karin, Cardoso, M. Cristina, Günther, Claudia, Lee-Kirsch, Min Ae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895045/
https://www.ncbi.nlm.nih.gov/pubmed/27230542
http://dx.doi.org/10.1038/ncomms11752
_version_ 1782435770216218624
author Wolf, Christine
Rapp, Alexander
Berndt, Nicole
Staroske, Wolfgang
Schuster, Max
Dobrick-Mattheuer, Manuela
Kretschmer, Stefanie
König, Nadja
Kurth, Thomas
Wieczorek, Dagmar
Kast, Karin
Cardoso, M. Cristina
Günther, Claudia
Lee-Kirsch, Min Ae
author_facet Wolf, Christine
Rapp, Alexander
Berndt, Nicole
Staroske, Wolfgang
Schuster, Max
Dobrick-Mattheuer, Manuela
Kretschmer, Stefanie
König, Nadja
Kurth, Thomas
Wieczorek, Dagmar
Kast, Karin
Cardoso, M. Cristina
Günther, Claudia
Lee-Kirsch, Min Ae
author_sort Wolf, Christine
collection PubMed
description Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.
format Online
Article
Text
id pubmed-4895045
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48950452016-06-21 RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA Wolf, Christine Rapp, Alexander Berndt, Nicole Staroske, Wolfgang Schuster, Max Dobrick-Mattheuer, Manuela Kretschmer, Stefanie König, Nadja Kurth, Thomas Wieczorek, Dagmar Kast, Karin Cardoso, M. Cristina Günther, Claudia Lee-Kirsch, Min Ae Nat Commun Article Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA. Nature Publishing Group 2016-05-27 /pmc/articles/PMC4895045/ /pubmed/27230542 http://dx.doi.org/10.1038/ncomms11752 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wolf, Christine
Rapp, Alexander
Berndt, Nicole
Staroske, Wolfgang
Schuster, Max
Dobrick-Mattheuer, Manuela
Kretschmer, Stefanie
König, Nadja
Kurth, Thomas
Wieczorek, Dagmar
Kast, Karin
Cardoso, M. Cristina
Günther, Claudia
Lee-Kirsch, Min Ae
RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
title RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
title_full RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
title_fullStr RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
title_full_unstemmed RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
title_short RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
title_sort rpa and rad51 constitute a cell intrinsic mechanism to protect the cytosol from self dna
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895045/
https://www.ncbi.nlm.nih.gov/pubmed/27230542
http://dx.doi.org/10.1038/ncomms11752
work_keys_str_mv AT wolfchristine rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT rappalexander rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT berndtnicole rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT staroskewolfgang rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT schustermax rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT dobrickmattheuermanuela rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT kretschmerstefanie rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT konignadja rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT kurththomas rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT wieczorekdagmar rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT kastkarin rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT cardosomcristina rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT guntherclaudia rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna
AT leekirschminae rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna