Cargando…
RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear m...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895045/ https://www.ncbi.nlm.nih.gov/pubmed/27230542 http://dx.doi.org/10.1038/ncomms11752 |
_version_ | 1782435770216218624 |
---|---|
author | Wolf, Christine Rapp, Alexander Berndt, Nicole Staroske, Wolfgang Schuster, Max Dobrick-Mattheuer, Manuela Kretschmer, Stefanie König, Nadja Kurth, Thomas Wieczorek, Dagmar Kast, Karin Cardoso, M. Cristina Günther, Claudia Lee-Kirsch, Min Ae |
author_facet | Wolf, Christine Rapp, Alexander Berndt, Nicole Staroske, Wolfgang Schuster, Max Dobrick-Mattheuer, Manuela Kretschmer, Stefanie König, Nadja Kurth, Thomas Wieczorek, Dagmar Kast, Karin Cardoso, M. Cristina Günther, Claudia Lee-Kirsch, Min Ae |
author_sort | Wolf, Christine |
collection | PubMed |
description | Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA. |
format | Online Article Text |
id | pubmed-4895045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48950452016-06-21 RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA Wolf, Christine Rapp, Alexander Berndt, Nicole Staroske, Wolfgang Schuster, Max Dobrick-Mattheuer, Manuela Kretschmer, Stefanie König, Nadja Kurth, Thomas Wieczorek, Dagmar Kast, Karin Cardoso, M. Cristina Günther, Claudia Lee-Kirsch, Min Ae Nat Commun Article Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA. Nature Publishing Group 2016-05-27 /pmc/articles/PMC4895045/ /pubmed/27230542 http://dx.doi.org/10.1038/ncomms11752 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Wolf, Christine Rapp, Alexander Berndt, Nicole Staroske, Wolfgang Schuster, Max Dobrick-Mattheuer, Manuela Kretschmer, Stefanie König, Nadja Kurth, Thomas Wieczorek, Dagmar Kast, Karin Cardoso, M. Cristina Günther, Claudia Lee-Kirsch, Min Ae RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA |
title | RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA |
title_full | RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA |
title_fullStr | RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA |
title_full_unstemmed | RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA |
title_short | RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA |
title_sort | rpa and rad51 constitute a cell intrinsic mechanism to protect the cytosol from self dna |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895045/ https://www.ncbi.nlm.nih.gov/pubmed/27230542 http://dx.doi.org/10.1038/ncomms11752 |
work_keys_str_mv | AT wolfchristine rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT rappalexander rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT berndtnicole rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT staroskewolfgang rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT schustermax rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT dobrickmattheuermanuela rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT kretschmerstefanie rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT konignadja rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT kurththomas rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT wieczorekdagmar rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT kastkarin rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT cardosomcristina rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT guntherclaudia rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna AT leekirschminae rpaandrad51constituteacellintrinsicmechanismtoprotectthecytosolfromselfdna |