Cargando…
Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning
Microcalcification is an effective indicator of early breast cancer. To improve the diagnostic accuracy of microcalcifications, this study evaluates the performance of deep learning-based models on large datasets for its discrimination. A semi-automated segmentation method was used to characterize a...
Autores principales: | Wang, Jinhua, Yang, Xi, Cai, Hongmin, Tan, Wanchang, Jin, Cangzheng, Li, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895132/ https://www.ncbi.nlm.nih.gov/pubmed/27273294 http://dx.doi.org/10.1038/srep27327 |
Ejemplares similares
-
Deep learning performance for detection and classification of microcalcifications on mammography
por: Pesapane, Filippo, et al.
Publicado: (2023) -
Microcalcification Discrimination in Mammography Using Deep Convolutional Neural Network: Towards Rapid and Early Breast Cancer Diagnosis
por: Leong, Yew Sum, et al.
Publicado: (2022) -
Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms
por: Cai, Hongmin, et al.
Publicado: (2019) -
Accuracy of cone-beam computed tomography, digital mammography and digital breast tomosynthesis for microcalcifications and margins to microcalcifications in breast specimens
por: Neubauer, Claudia, et al.
Publicado: (2022) -
Features of Microcalcifications on Screening Mammography in Young Women
por: Fushimi, Atsushi, et al.
Publicado: (2018)