Cargando…

Anomalous electronic structure and magnetoresistance in TaAs(2)

The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yongkang, McDonald, R. D., Rosa, P. F. S., Scott, B., Wakeham, N., Ghimire, N. J., Bauer, E. D., Thompson, J. D., Ronning, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895157/
https://www.ncbi.nlm.nih.gov/pubmed/27271852
http://dx.doi.org/10.1038/srep27294
Descripción
Sumario:The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs(2) possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs(2) is a new topological semimetal [ℤ(2) invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.