Cargando…
Machine learning and data mining in complex genomic data—a review on the lessons learned in Genetic Analysis Workshop 19
In the analysis of current genomic data, application of machine learning and data mining techniques has become more attractive given the rising complexity of the projects. As part of the Genetic Analysis Workshop 19, approaches from this domain were explored, mostly motivated from two starting point...
Autores principales: | König, Inke R., Auerbach, Jonathan, Gola, Damian, Held, Elizabeth, Holzinger, Emily R., Legault, Marc-André, Sun, Rui, Tintle, Nathan, Yang, Hsin-Chou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895282/ https://www.ncbi.nlm.nih.gov/pubmed/26866367 http://dx.doi.org/10.1186/s12863-015-0315-8 |
Ejemplares similares
-
Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data
por: Held, Elizabeth, et al.
Publicado: (2016) -
Identification of interactions using model-based multifactor dimensionality reduction
por: Gola, Damian, et al.
Publicado: (2016) -
Comparing gene set analysis methods on single-nucleotide polymorphism data from Genetic Analysis Workshop 16
por: Tintle, Nathan L, et al.
Publicado: (2009) -
Genetic Analysis Workshop 18: Methods and strategies for analyzing human sequence and phenotype data in members of extended pedigrees
por: Bickeböller, Heike, et al.
Publicado: (2014) -
Comparison of parametric and machine methods for variable selection in simulated Genetic Analysis Workshop 19 data
por: Holzinger, Emily R., et al.
Publicado: (2016)