Cargando…
Missing value imputation for microRNA expression data by using a GO-based similarity measure
BACKGROUND: Missing values are commonly present in microarray data profiles. Instead of discarding genes or samples with incomplete expression level, missing values need to be properly imputed for accurate data analysis. The imputation methods can be roughly categorized as expression level-based and...
Autores principales: | Yang, Yang, Xu, Zhuangdi, Song, Dandan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895707/ https://www.ncbi.nlm.nih.gov/pubmed/26818962 http://dx.doi.org/10.1186/s12859-015-0853-0 |
Ejemplares similares
-
Imputation methods for missing data for polygenic models
por: Fridley, Brooke, et al.
Publicado: (2003) -
Efficiency of multiple imputation to test for association in the presence of missing data
por: Croiseau, Pascal, et al.
Publicado: (2007) -
Analysis of the progression of systolic blood pressure using imputation of missing phenotype values
por: Vaitsiakhovich, Tatsiana, et al.
Publicado: (2014) -
MicroRNA-centric measurement improves functional enrichment analysis of co-expressed and differentially expressed microRNA clusters
por: Lee, Su Yeon, et al.
Publicado: (2012) -
Advanced methods for missing values imputation based on similarity learning
por: Fouad, Khaled M., et al.
Publicado: (2021)