Cargando…
Large-scale ordering of nanoparticles using viscoelastic shear processing
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscil...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895715/ https://www.ncbi.nlm.nih.gov/pubmed/27255808 http://dx.doi.org/10.1038/ncomms11661 |
_version_ | 1782435907723329536 |
---|---|
author | Zhao, Qibin Finlayson, Chris E. Snoswell, David R. E. Haines, Andrew Schäfer, Christian Spahn, Peter Hellmann, Goetz P. Petukhov, Andrei V. Herrmann, Lars Burdet, Pierre Midgley, Paul A. Butler, Simon Mackley, Malcolm Guo, Qixin Baumberg, Jeremy J. |
author_facet | Zhao, Qibin Finlayson, Chris E. Snoswell, David R. E. Haines, Andrew Schäfer, Christian Spahn, Peter Hellmann, Goetz P. Petukhov, Andrei V. Herrmann, Lars Burdet, Pierre Midgley, Paul A. Butler, Simon Mackley, Malcolm Guo, Qixin Baumberg, Jeremy J. |
author_sort | Zhao, Qibin |
collection | PubMed |
description | Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. |
format | Online Article Text |
id | pubmed-4895715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48957152016-08-18 Large-scale ordering of nanoparticles using viscoelastic shear processing Zhao, Qibin Finlayson, Chris E. Snoswell, David R. E. Haines, Andrew Schäfer, Christian Spahn, Peter Hellmann, Goetz P. Petukhov, Andrei V. Herrmann, Lars Burdet, Pierre Midgley, Paul A. Butler, Simon Mackley, Malcolm Guo, Qixin Baumberg, Jeremy J. Nat Commun Article Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. Nature Publishing Group 2016-06-03 /pmc/articles/PMC4895715/ /pubmed/27255808 http://dx.doi.org/10.1038/ncomms11661 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Zhao, Qibin Finlayson, Chris E. Snoswell, David R. E. Haines, Andrew Schäfer, Christian Spahn, Peter Hellmann, Goetz P. Petukhov, Andrei V. Herrmann, Lars Burdet, Pierre Midgley, Paul A. Butler, Simon Mackley, Malcolm Guo, Qixin Baumberg, Jeremy J. Large-scale ordering of nanoparticles using viscoelastic shear processing |
title | Large-scale ordering of nanoparticles using viscoelastic shear processing |
title_full | Large-scale ordering of nanoparticles using viscoelastic shear processing |
title_fullStr | Large-scale ordering of nanoparticles using viscoelastic shear processing |
title_full_unstemmed | Large-scale ordering of nanoparticles using viscoelastic shear processing |
title_short | Large-scale ordering of nanoparticles using viscoelastic shear processing |
title_sort | large-scale ordering of nanoparticles using viscoelastic shear processing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895715/ https://www.ncbi.nlm.nih.gov/pubmed/27255808 http://dx.doi.org/10.1038/ncomms11661 |
work_keys_str_mv | AT zhaoqibin largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT finlaysonchrise largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT snoswelldavidre largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT hainesandrew largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT schaferchristian largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT spahnpeter largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT hellmanngoetzp largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT petukhovandreiv largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT herrmannlars largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT burdetpierre largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT midgleypaula largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT butlersimon largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT mackleymalcolm largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT guoqixin largescaleorderingofnanoparticlesusingviscoelasticshearprocessing AT baumbergjeremyj largescaleorderingofnanoparticlesusingviscoelasticshearprocessing |