Cargando…

Large-scale ordering of nanoparticles using viscoelastic shear processing

Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscil...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Qibin, Finlayson, Chris E., Snoswell, David R. E., Haines, Andrew, Schäfer, Christian, Spahn, Peter, Hellmann, Goetz P., Petukhov, Andrei V., Herrmann, Lars, Burdet, Pierre, Midgley, Paul A., Butler, Simon, Mackley, Malcolm, Guo, Qixin, Baumberg, Jeremy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895715/
https://www.ncbi.nlm.nih.gov/pubmed/27255808
http://dx.doi.org/10.1038/ncomms11661
_version_ 1782435907723329536
author Zhao, Qibin
Finlayson, Chris E.
Snoswell, David R. E.
Haines, Andrew
Schäfer, Christian
Spahn, Peter
Hellmann, Goetz P.
Petukhov, Andrei V.
Herrmann, Lars
Burdet, Pierre
Midgley, Paul A.
Butler, Simon
Mackley, Malcolm
Guo, Qixin
Baumberg, Jeremy J.
author_facet Zhao, Qibin
Finlayson, Chris E.
Snoswell, David R. E.
Haines, Andrew
Schäfer, Christian
Spahn, Peter
Hellmann, Goetz P.
Petukhov, Andrei V.
Herrmann, Lars
Burdet, Pierre
Midgley, Paul A.
Butler, Simon
Mackley, Malcolm
Guo, Qixin
Baumberg, Jeremy J.
author_sort Zhao, Qibin
collection PubMed
description Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.
format Online
Article
Text
id pubmed-4895715
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48957152016-08-18 Large-scale ordering of nanoparticles using viscoelastic shear processing Zhao, Qibin Finlayson, Chris E. Snoswell, David R. E. Haines, Andrew Schäfer, Christian Spahn, Peter Hellmann, Goetz P. Petukhov, Andrei V. Herrmann, Lars Burdet, Pierre Midgley, Paul A. Butler, Simon Mackley, Malcolm Guo, Qixin Baumberg, Jeremy J. Nat Commun Article Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. Nature Publishing Group 2016-06-03 /pmc/articles/PMC4895715/ /pubmed/27255808 http://dx.doi.org/10.1038/ncomms11661 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Zhao, Qibin
Finlayson, Chris E.
Snoswell, David R. E.
Haines, Andrew
Schäfer, Christian
Spahn, Peter
Hellmann, Goetz P.
Petukhov, Andrei V.
Herrmann, Lars
Burdet, Pierre
Midgley, Paul A.
Butler, Simon
Mackley, Malcolm
Guo, Qixin
Baumberg, Jeremy J.
Large-scale ordering of nanoparticles using viscoelastic shear processing
title Large-scale ordering of nanoparticles using viscoelastic shear processing
title_full Large-scale ordering of nanoparticles using viscoelastic shear processing
title_fullStr Large-scale ordering of nanoparticles using viscoelastic shear processing
title_full_unstemmed Large-scale ordering of nanoparticles using viscoelastic shear processing
title_short Large-scale ordering of nanoparticles using viscoelastic shear processing
title_sort large-scale ordering of nanoparticles using viscoelastic shear processing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895715/
https://www.ncbi.nlm.nih.gov/pubmed/27255808
http://dx.doi.org/10.1038/ncomms11661
work_keys_str_mv AT zhaoqibin largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT finlaysonchrise largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT snoswelldavidre largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT hainesandrew largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT schaferchristian largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT spahnpeter largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT hellmanngoetzp largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT petukhovandreiv largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT herrmannlars largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT burdetpierre largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT midgleypaula largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT butlersimon largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT mackleymalcolm largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT guoqixin largescaleorderingofnanoparticlesusingviscoelasticshearprocessing
AT baumbergjeremyj largescaleorderingofnanoparticlesusingviscoelasticshearprocessing