Cargando…
Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory
BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the pharmaceutical industry for identifying potential new uses for existing drugs and a...
Autores principales: | Huang, Chien-Hung, Chang, Peter Mu-Hsin, Hsu, Chia-Wei, Huang, Chi-Ying F., Ng, Ka-Lok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895785/ https://www.ncbi.nlm.nih.gov/pubmed/26817825 http://dx.doi.org/10.1186/s12859-015-0845-0 |
Ejemplares similares
-
Drug Repositioning Discovery for Early- and Late-Stage Non-Small-Cell Lung Cancer
por: Huang, Chien-Hung, et al.
Publicado: (2014) -
Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams
por: Eshleman, Ryan, et al.
Publicado: (2016) -
Applications of graph theory in protein structure identification
por: Yan, Yan, et al.
Publicado: (2011) -
Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks
por: Hsieh, Wen-Tsong, et al.
Publicado: (2015) -
DMAP: a connectivity map database to enable identification of novel drug repositioning candidates
por: Huang, Hui, et al.
Publicado: (2015)