Cargando…
Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses
PURPOSE: We aim to fabricate a thermoplastic poly(methylmethacrylate) (PMMA) Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs) for rapid molecular detection of foodborne pathogen bacteria. METHODS: A miniaturized plastic device was fabricated by utilizing PMMA substr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Continence Society
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895911/ https://www.ncbi.nlm.nih.gov/pubmed/27230459 http://dx.doi.org/10.5213/inj.1632602.301 |
_version_ | 1782435948909297664 |
---|---|
author | Trinh, Kieu The Loan Zhang, Hainan Kang, Dong-Jin Kahng, Sung-Hyun Tall, Ben D. Lee, Nae Yoon |
author_facet | Trinh, Kieu The Loan Zhang, Hainan Kang, Dong-Jin Kahng, Sung-Hyun Tall, Ben D. Lee, Nae Yoon |
author_sort | Trinh, Kieu The Loan |
collection | PubMed |
description | PURPOSE: We aim to fabricate a thermoplastic poly(methylmethacrylate) (PMMA) Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs) for rapid molecular detection of foodborne pathogen bacteria. METHODS: A miniaturized plastic device was fabricated by utilizing PMMA substrates mediated by poly(dimethylsiloxane) interfacial coating, enabling bonding under mild conditions, and thus avoiding the deformation or collapse of microchannels. Surface characterizations were carried out and bond strength was measured. The feasibility of the Lab-on-a-Chip device for performing on-chip PCR utilizing a lab-made, portable dual heater was evaluated. The results were compared with those obtained using a commercially available thermal cycler. RESULTS: A PMMA Lab-on-a-Chip device was designed and fabricated for conducting PCR using foodborne pathogens as sample targets. A robust bond was established between the PMMA substrates, which is essential for performing miniaturized PCR on plastic. The feasibility of on-chip PCR was evaluated using Escherichia coli O157:H7 and Cronobacter condimenti, two worldwide foodborne pathogens, and the target amplicons were successfully amplified within 25 minutes. CONCLUSIONS: In this study, we present a novel design of a low-cost and high-throughput thermoplastic PMMA Lab-on-a-Chip device for conducting microscale PCR, and we enable rapid molecular diagnoses of two important foodborne pathogens in minute resolution using this device. In this regard, the introduced highly portable system design has the potential to enable PCR investigations of many diseases quickly and accurately. |
format | Online Article Text |
id | pubmed-4895911 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Korean Continence Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-48959112016-06-07 Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses Trinh, Kieu The Loan Zhang, Hainan Kang, Dong-Jin Kahng, Sung-Hyun Tall, Ben D. Lee, Nae Yoon Int Neurourol J Original Article PURPOSE: We aim to fabricate a thermoplastic poly(methylmethacrylate) (PMMA) Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs) for rapid molecular detection of foodborne pathogen bacteria. METHODS: A miniaturized plastic device was fabricated by utilizing PMMA substrates mediated by poly(dimethylsiloxane) interfacial coating, enabling bonding under mild conditions, and thus avoiding the deformation or collapse of microchannels. Surface characterizations were carried out and bond strength was measured. The feasibility of the Lab-on-a-Chip device for performing on-chip PCR utilizing a lab-made, portable dual heater was evaluated. The results were compared with those obtained using a commercially available thermal cycler. RESULTS: A PMMA Lab-on-a-Chip device was designed and fabricated for conducting PCR using foodborne pathogens as sample targets. A robust bond was established between the PMMA substrates, which is essential for performing miniaturized PCR on plastic. The feasibility of on-chip PCR was evaluated using Escherichia coli O157:H7 and Cronobacter condimenti, two worldwide foodborne pathogens, and the target amplicons were successfully amplified within 25 minutes. CONCLUSIONS: In this study, we present a novel design of a low-cost and high-throughput thermoplastic PMMA Lab-on-a-Chip device for conducting microscale PCR, and we enable rapid molecular diagnoses of two important foodborne pathogens in minute resolution using this device. In this regard, the introduced highly portable system design has the potential to enable PCR investigations of many diseases quickly and accurately. Korean Continence Society 2016-05 2016-05-26 /pmc/articles/PMC4895911/ /pubmed/27230459 http://dx.doi.org/10.5213/inj.1632602.301 Text en Copyright © 2016 Korean Continence Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Trinh, Kieu The Loan Zhang, Hainan Kang, Dong-Jin Kahng, Sung-Hyun Tall, Ben D. Lee, Nae Yoon Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses |
title | Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses |
title_full | Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses |
title_fullStr | Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses |
title_full_unstemmed | Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses |
title_short | Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses |
title_sort | fabrication of polymerase chain reaction plastic lab-on-a-chip device for rapid molecular diagnoses |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895911/ https://www.ncbi.nlm.nih.gov/pubmed/27230459 http://dx.doi.org/10.5213/inj.1632602.301 |
work_keys_str_mv | AT trinhkieutheloan fabricationofpolymerasechainreactionplasticlabonachipdeviceforrapidmoleculardiagnoses AT zhanghainan fabricationofpolymerasechainreactionplasticlabonachipdeviceforrapidmoleculardiagnoses AT kangdongjin fabricationofpolymerasechainreactionplasticlabonachipdeviceforrapidmoleculardiagnoses AT kahngsunghyun fabricationofpolymerasechainreactionplasticlabonachipdeviceforrapidmoleculardiagnoses AT tallbend fabricationofpolymerasechainreactionplasticlabonachipdeviceforrapidmoleculardiagnoses AT leenaeyoon fabricationofpolymerasechainreactionplasticlabonachipdeviceforrapidmoleculardiagnoses |